1、中考数学复习资料,精心整编吐血推荐,如若有用请打赏支持,感激不尽!2 013中考数学精选例题解析函数与一元二次方程知识考点:1、理解二次函数与一元二次方程之间的关系;2、会结合方程根的性质、一元二次方程根的判别式,判定抛物线与轴的交点情况;3、会利用韦达定理解决有关二次函数的问题。精典例题:【例1】已抛物线(为实数)。(1)为何值时,抛物线与轴有两个交点?(2)如果抛物线与轴相交于A、B两点,与轴交于点C,且ABC的面积为2,求该抛物线的解析式。分析:抛物线与轴有两个交点,则对应的一元二次方程有两个不相等的实数根,将问题转化为求一元二次方程有两个不相等的实数根应满足的条件。略解:(1)由已知有
2、,解得且 (2)由得C(0,1)又或或【例2】已知抛物线。(1)求证:不论为任何实数,抛物线与轴有两个不同的交点,且这两个点都在轴的正半轴上;(2)设抛物线与轴交于点A,与轴交于B、C两点,当ABC的面积为48平方单位时,求的值。(3)在(2)的条件下,以BC为直径作M,问M是否经过抛物线的顶点P?解析:(1),由,可得证。(2) 又 解得或(舍去) (3),顶点(5,9), M不经过抛物线的顶点P。评注:二次函数与二次方程有着深刻的内在联系,因此,善于促成二次函数问题与二次方程问题的相互转化,是解相关问题的常用技巧。探索与创新:【问题】如图,抛物线,其中、分别是ABC的A、B、C的对边。(1
3、)求证:该抛物线与轴必有两个交点;(2)设有直线与抛物线交于点E、F,与轴交于点M,抛物线与轴交于点N,若抛物线的对称轴为,MNE与MNF的面积之比为51,求证:ABC是等边三角形;(2)当时,设抛物线与轴交于点P、Q,问是否存在过P、Q两点且与轴相切的圆?若存在这样的圆,求出圆心的坐标;若不存在,请说明理由。解析:(1) , (2)由得 由得: 设E(,),F(,),那么:, 由51得: 或 由知应舍去。 由解得 ,即 或(舍去) ABC是等边三角形。(3),即 或(舍去) ,此时抛物线的对称轴是,与轴的两交点坐标为P(,0),Q(,0)设过P、Q两点的圆与轴的切点坐标为(0,),由切割线定
4、理有: 故所求圆的圆心坐标为(2,1)或(2,1)评注:本题(1)(2)问与函数图像无关,而第(3)问需要用前两问的结论,解题时千万要认真分析前因后果。同时,如果后一问的解答需要前一问的结论时,尽管前一问没有解答出来,倘能会用前一题的结论来解答后一问题,也是得分的一种策略。跟踪训练:一、选择题:1、已知抛物线与轴两交点在轴同侧,它们的距离的平方等于,则的值为( ) A、2 B、12 C、24 D、2或242、已知二次函数(0)与一次函数(0)的图像交于点A(2,4),B(8,2),如图所示,则能使成立的的取值范围是( ) A、 B、 C、 D、或 3、如图,抛物线与两坐标轴的交点分别是A、B、
5、E,且ABE是等腰直角三角形,AEBE,则下列关系:;其中正确的有( ) A、4个 B、3个 C、2个 D、1个4、设函数的图像如图所示,它与轴交于A、B两点,线段OA与OB的比为13,则的值为( ) A、或2 B、 C、1 D、2二、填空题:1、已知抛物线与轴交于两点A(,0),B(,0),且,则 。2、抛物线与轴的两交点坐标分别是A(,0),B(,0),且,则的值为 。3、若抛物线交轴于A、B两点,交轴于点C,且ACB900,则 。4、已知二次函数与轴交点的横坐标为、,则对于下列结论:当时,;当时,;方程0有两个不相等的实数根、;,;,其中所有正确的结论是 (只填写顺号)。三、解答题:1、
6、已知二次函数(0)的图像过点E(2,3),对称轴为,它的图像与轴交于两点A(,0),B(,0),且,。(1)求这个二次函数的解析式;(2)在(1)中抛物线上是否存在点P,使POA的面积等于EOB的面积?若存在,求出点P的坐标;若不存在,请说明理由。2、已知抛物线与轴交于点A(,0),B(,0)两点,与轴交于点C,且,若点A关于轴的对称点是点D。(1)求过点C、B、D的抛物线解析式;(2)若P是(1)中所求抛物线的顶点,H是这条抛物线上异于点C的另一点,且HBD与CBD的面积相等,求直线PH的解析式;3、已知抛物线交轴于点A(,0),B(,0)两点,交轴于点C,且,。(1)求抛物线的解析式;(2)在轴的下方是否存在着抛物线上的点,使APB为锐角、钝角,若存在,求出P点的横坐标的范围;若不存在,请说明理由。参考答案一、选择题:CDBD二、填空题:1、2;2、;3、3;4、三、解答题:1、(1);(2)存在,P(,9)或(,9)2、(1);(2)3、(1);(2)当时APB为锐角,当或时APB为钝角。