1、2012年全国部分地区中考数学试题分类解析汇编第7章分式与分式方程一、选择题1. (2012安徽,6,4分)化简的结果是( )A.+1 B. -1 C. D. 解析:本题是分式的加法运算,分式的加减,首先看分母是否相同,同分母的分式加减,分母不变,分子相加减,如果分母不同,先通分,后加减,本题分母互为相反数,可以化成同分母的分式加减解答:解: 故选D点评:分式的一些知识可以类比着分数的知识学习,分式的基本性质是关键,掌握了分式的基本性质,可以利用它进行通分、约分,在进行分式运算时根据法则,一定要将结果化成最简分式2(2012成都)分式方程 的解为( ) A B C D 考点:解分式方程。解答:
2、解:,去分母得:3x3=2x,移项得:3x2x=3,合并同类项得:x=3,检验:把x=3代入最简公分母2x(x1)=120,故x=3是原方程的解,故原方程的解为:,故选:C3(2012义乌市)下列计算错误的是()ABCD考点:分式的混合运算。解答:解:A、,故本选项错误;B、,故本选项正确;C、=1,故本选项正确;D、,故本选项正确故选A4(2012丽水)把分式方程转化为一元一次方程时,方程两边需同乘以()AxB2xCx4Dx(x4)考点:解分式方程。分析:根据各分母寻找公分母x(x4),方程两边乘最简公分母,可以把分式方程转化为整式方程解答:解:由两个分母(x4)和x可得最简公分母为x(x4
3、),所以方程两边应同时乘以x(x4)故选D点评:本题考查解分式方程去分母的能力,确定最简公分母应根据所给分式的分母来决定二、填空题1(2012福州)计算:_考点:分式的加减法专题:计算题分析:直接根据同分母的分数相加减进行计算即可解答:解:原式1故答案为:1点评:本题考查的是分式的加减法,同分母的分式相加减,分母不变,把分子相加减2(2012连云港)今年6月1日起,国家实施了中央财政补贴条例支持高效节能电器的推广使用,某款定速空调在条例实施后,每购买一台,客户可获财政补贴200元,若同样用11万元所购买的此款空调数台,条例实施后比实施前多10%,则条例实施前此款空调的售价为2200元考点:分式
4、方程的应用。分析:可根据:“同样用11万元所购买的此款空调数台,条例实施后比实施前多10%,”来列出方程组求解解答:解:假设条例实施前此款空调的售价为x元,根据题意得出:(110%),解得:x2200,经检验得出:x2200是原方程的解,答:则条例实施前此款空调的售价为2200元,故答案为:2200点评:此题主要考查了分式方程的应用,解题关键是找准描述语,找出合适的等量关系,列出方程,再求解3(2012无锡)方程的解为x=8考点:解分式方程。分析:观察可得最简公分母是x(x2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解解答:解:方程的两边同乘x(x2),得:4(x2)3x=0,解
5、得:x=8检验:把x=8代入x(x2)=480,即x=8是原分式方程的解故原方程的解为:x=8故答案为:x=8点评:此题考查了分式方程的解法此题比较简单,注意掌握转化思想的应用,注意解分式方程一定要验根4(2012山西)化简的结果是 考点:分式的混合运算。解答:解:+=+=+=故答案为:5(2012德阳)计算:=x+5考点:分式的加减法。分析:公分母为x5,将分母化为同分母,再将分子因式分解,约分解答:解:=x+5,故答案为:x+5点评:本题考查了分式的加减运算分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然
6、后再相加减6(2012杭州)化简得;当m=1时,原式的值为1考点:约分;分式的值。专题:计算题。分析:先把分式的分子和分母分解因式得出,约分后得出,把m=1代入上式即可求出答案解答:解:,=,=,当m=1时,原式=1,故答案为:,1点评:本题主要考查了分式的约分,关键是找出分式的分子和分母的公因式,题目比较典型,难度适中三、解答题1(2012广州)已知(ab),求的值考点:分式的化简求值;约分;通分;分式的加减法。专题:计算题。分析:求出=,通分得出,推出,化简得出,代入求出即可解答:解:+=,=,=,=,=,=,=点评:本题考查了通分,约分,分式的加减的应用,能熟练地运用分式的加减法则进行计
7、算是解此题的关键,用了整体代入的方法(即把当作一个整体进行代入)2(2012梅州)解方程:考点:解分式方程。分析:观察可得最简公分母是(x+1)(x1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解解答:解:方程两边都乘以(x+1)(x1),得4(x+1)(x+2)=(x21),整理,3x=1,解得x=经检验,x=是原方程的解故原方程的解是x=点评:本题考查了分式方程的解法,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解(2)解分式方程一定注意要验根3. (2012湛江)计算:解:=4. (2012广东珠海)先化简,再求值:,其中解:原式=,当x=时,原
8、式=5. (2012珠海)某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支(1)求第一次每支铅笔的进价是多少元?(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问每支售价至少是多少元?解:(1)设第一次每支铅笔进价为x元,根据题意列方程得,=30,解得,x=4,检验:当x=4时,分母不为0,故x=4是原分式方程的解答:第一次每只铅笔的进价为4元(2)设售价为y元,根据题意列不等式为:(y4)+(y5)420,解得,y6答:每支售价至少是6元6(2012安顺)张家界市为了治理城市污水,需
9、要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?考点:分式方程的应用。解答:解:设原计划每天铺设管道x米,则,解得x=10,经检验,x=10是原方程的解答:原计划每天铺设管道10米7、(2012六盘水)(2)先化简代数式,再从2,2,0三个数中选一个恰当的数作为a的值代入求值考点:分式的化简求值;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值。专题:开放型。分析:(2)将原式括号中的两项通分并利用同分母分式的减法法则计算,除式的分子利用完全平
10、方公式分解因式,分母利用平方差公式分解因式,然后利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分后得到最简结果,然后从2,2,0三个数中选择一个数0(2与2使分母为0,不合题意,舍去),将a=0代入化简后的式子中计算,即可求出原式的值解答:(2)(1)=,当a=0时,原式=2点评:此题考查了分式的化简求值,以及实数的运算,涉及的知识有:零指数、负指数公式,绝对值的代数意义,二次根式的化简,以及特殊角的三角函数值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式本题第二小题a的取值注意不能选2和2,只能选择a=08(2012铜仁)化
11、简:考点:分式的混合运算。解答:解:原式= -19(2012恩施州)先化简,再求值:,其中x=2考点:分式的化简求值。专题:计算题。分析:先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可解答:解:原式=,=,=,将x=2代入上式,原式=点评:本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键10. (2012湖北黄石)(本小题满分7分)先化简,后计算:,其中.【考点】分式的化简求值【专题】探究型【分析】先根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可【解答】解:原式= 2分 = 3分 当时,原式= 2分【点评】本题考查的是分式的化简求值,熟知
12、分式混合运算的法则是解答此题的关键11(2012武汉)解方程:考点:解分式方程。解答:解:方程两边都乘以3x(x+5)得,6x=x+5,解得x=1,检验:当x=1时,3x(x+5)=31(1+5)=180,所以x=1是方程的根,因此,原分式方程的解是x=112(2012湖南长沙)先化简,再求值:,其中a=2,b=1解答:解:原式=+=+=,把 a=2,b=1代入得:原式=213、(2012湖南常德)化简: 知识点考察:分式的通分,分式的约分,除法变乘法的法则,同类项的合并, 平方差公式。 能力考察:分式、整式的运算能力。 分析:先对两个括号里的分式进行通分运算,再把除法变乘法进行约分运算。 解
13、:原式= = = 点评:注意运算顺序,注意运算的准确,只要每一步都到位了,此题也就完成了。14(2012娄底)先化简:,再请你选择一个合适的数作为x的值代入求值考点:分式的化简求值。专题:开放型。分析:先通分计算括号里的,再计算括号外的,最后根据分式性质,找一个恰当的数2(此数不唯一)代入化简后的式子计算即可解答:解:原式=x1,根据分式的意义可知,x0,且x1,当x=2时,原式=21=1点评:本题考查了分式的化简求值,解题的关键是分子、分母的因式分解,以及通分、约分15(2012湘潭)先化简,再求值:,其中a=考点:分式的化简求值;分式的乘除法;分式的加减法。专题:计算题。分析:先算括号里面
14、的减法(通分后相减),再算乘法得出,把a的值代入求出即可解答:解:当a=1时,原式=(a1)=点评:本题考查了分式的加减、乘除法的应用,主要考查学生的计算和化简能力,题目比较典型,是一道比较好的题目16(2012益阳)计算代数式的值,其中a=1,b=2,c=3考点:分式的化简求值。专题:探究型。分析:先根据分式的加减法把原式进行化简,再把a=1,b=2,c=3代入进行计算即可解答:解:原式=c当a=1、b=2、c=3时,原式=3点评:本题考查的是分式的化简求值,在解答此类题目时要注意通分、约分的应用17(2012张家界)先化简:,再用一个你最喜欢的数代替a计算结果考点:分式的化简求值。解答:解
15、:原式=+1=+1a0,a2,a可以等于1,当a=1时,原式=1+1=218(2012连云港)化简(1)考点:分式的混合运算。专题:计算题。分析:将原式括号中的两项通分并利用同分母分式的加法法则计算,将除式的分子利用平方差公式分解因式,分母利用完全平方公式分解因式,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分后即可得到结果解答:解:(1)()点评:此题考查了分式的混合运算,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时,分式的分子分母出现多项式,应先将多项式分解因式再约分19(2012苏州)解分式方程:考点:解分
16、式方程。专题:计算题。分析:两边同乘分式方程的最简公分母,将分式方程转化为整式方程,再解答,然后检验解答:解:去分母得:3x+x+2=4,解得:x=,经检验,x=是原方程的解点评:本题考查了解分式方程,找到最简公分母将分式方程转化为整式方程是解题的关键20(2012苏州)先化简,再求值:,其中,a=+1考点:分式的化简求值。专题:计算题。分析:将原式第二项第一个因式的分子利用完全公式分解因式,分母利用平方差公式分解因式,约分后再利用同分母分式的加法法则计算,得到最简结果,然后将a的值代入化简后的式子中计算,即可得到原式的值解答:解:+=+=+=,当a=+1时,原式=点评:此题考查了分式的化简求
17、值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时分式的分子分母出现多项式,应先将多项式分解因式后再约分,此外化简求值题要先将原式化为最简时再代值21(2012扬州)先化简:,再选取一个合适的a值代入计算考点:分式的化简求值。专题:开放型。分析:先将分式的除法转化为乘法进行计算,然后再算减法,最后找一个使分母不为0的值代入即可解答:解:原式111,a取除0、2、1、1以外的数,如取a10,原式点评:本题考查了分式的化简求值,不仅要懂得因式分解,还要知道分式除法的运算法则22(2012扬州)为了改善生态环境,防止水土流失,某村计划在荒坡
18、上种480棵树,由于青年志愿者的支援,每日比原计划多种,结果提前4天完成任务,原计划每天种多少棵树?考点:分式方程的应用。分析:根据:原计划完成任务的天数实际完成任务的天数4,列方程即可解答:解:设原计划每天种x棵树,据题意得,解得x30,经检验得出:x30是原方程的解答:原计划每天种30棵树点评:此题主要考查了分式方程的应用,合理地建立等量关系,列出方程是解题关键23(2012南昌)化简:考点:分式的乘除法。专题:计算题。分析:根据分式的乘法与除法法先把各分式的分子因式分解,再把分式的除法变为乘法进行计算即可解答:解:原式=1点评:本题考查的是分式的乘除法,即分式乘除法的运算,归根到底是乘法
19、的运算,当分子和分母是多项式时,一般应先进行因式分解,再约分24(2012德州)已知:,求的值考点:分式的化简求值。专题:计算题。分析:将原式的分子利用完全平方公式分解因式,分母利用平方差公式分解因式,约分后得到最简结果,将x与y的值代入,化简后即可得到原式的值解答:解:= (2分)=,(4分)当x=+1,y=1时,原式=点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时分式的分子分母出现多项式时,应先将多项式分解因式后再约分,此外分式的化简求值题,要先将原式化为最简再代值25(2000杭州)解方程:考点:
20、解分式方程。专题:计算题。分析:本题的最简公分母是(x+1)(x1),方程两边都乘最简公分母,可把分式方程转换为整式方程求解解答:解:方程两边都乘(x+1)(x1),得:2+(x1)=(x+1)(x1),解得:x=2或1,经检验:x=2是原方程的解点评:当分母是多项式,又能进行因式分解时,应先进行因式分解,再确定最简公分母解分式方程一定注意要代入最简公分母验根26(2012山西)解方程:考点:解分式方程。解答:解:方程两边同时乘以2(3x1),得42(3x1)=3,化简,6x=3,解得x=检验:x=时,2(3x1)=2(31)0所以,x=是原方程的解27(2012陕西)(本题满分5分)化简:【
21、答案】解:原式= = = = =28(2012上海)解方程:考点:解分式方程。解答:解:方程的两边同乘(x+3)(x3),得x(x3)+6=x+3,整理,得x24x+3=0,解得x1=1,x2=3经检验:x=3是方程的增根,x=1是原方程的根,故原方程的根为x=129(2012成都)(本小题满分6分)化简: 考点:分式的混合运算。解答:解:原式=ab30、(2012云南)化简求值:,其中.答案 解析 当时,原式31(2012重庆)解方程:考点:解分式方程。专题:计算题。分析:方程两边都乘以最简公分母(x1)(x2),把分式方程化为整式方程求解,然后进行检验解答:解:方程两边都乘以(x1)(x2
22、)得,2(x2)=x1,2x4=x1,x=3,经检验,x=3是原方程的解,所以,原分式方程的解是x=3点评:本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解(2)解分式方程一定注意要验根32(2012重庆)先化简,再求值:,其中x是不等式组的整数解考点:分式的化简求值;一元一次不等式组的整数解。专题:计算题。分析:将原式括号中的第一项分母利用平方差公式分解因式,然后找出两分母的最简公分母,通分并利用同分母分式的减法法则计算,分子进行合并整理,同时将除式的分母利用完全平方公式分解因式,然后利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分后
23、即可得到结果,分别求出x满足的不等式组两个一元一次不等式的解集,找出两解集的公共部分确定出不等式组的解集,在解集中找出整数解,即为x的值,将x的值代入化简后的式子中计算,即可得到原式的值解答:解:()=,又,由解得:x4,由解得:x2,不等式组的解集为4x2,其整数解为3,当x=3时,原式=2点评:此题考查了分式的化简求值,以及一元一次不等式的解法,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时分式的分子分母是多项式,应先将多项式分解因式后再约分2011年全国各地中考数学真题分类汇编第7章 分式与分式方程一、选择题1.(2010湖北孝
24、感,6,3分)化简的结果是( )A. B. C. D. y【答案】B 2. (2011山东威海,8,3分)计算:的结果是( )ABCD【答案】B3. (2011四川南充市,8,3分) 当8、分式的值为0时,x的值是( )(A)0 (B)1 (C)1 (D)2【答案】B4. (2011浙江丽水,7,3分)计算 的结果为( )A. B. C. 1D.1a【答案】C5. (2011江苏苏州,7,3分)已知,则的值是A. B. C.2 D.2【答案】D6. ( 2011重庆江津, 2,4分)下列式子是分式的是( )A. B. C. D. 【答案】B.7. (2011江苏南通,10,3分)设mn0,m2
25、n24mn,则的值等于A. 2B. C. D. 3【答案】A8. (2011山东临沂,5,3分)化简(x)(1)的结果是( )A Bx1 CD【答案】B9. (2011广东湛江11,3分)化简的结果是A B C D1 【答案】A10(2011浙江金华,7,3分)计算 的结果为( ) A. B. C. 1 D.1a【答案】C二、填空题1. (2011浙江省舟山,11,4分)当 时,分式有意义【答案】2. (2011福建福州,14,4分)化简的结果是 .【答案】3. (2011山东泰安,22 ,3分)化简:(-)的结果为 。【答案】x-64. (2011浙江杭州,15,4)已知分式,当x2时,分式
26、无意义,则a ,当a-6且m-415(2010新疆乌鲁木齐)在数轴上,点A、B对应的数分别为2、,且A、B两点关于原点对称,则的值为 。【答案】116(2010年山西)方程的解为 【答案】17(2010辽宁大连)方程的解是 【答案】x=118(2010吉林)方程的解是x=_。【答案】119(2010黑龙江绥化)已知关于x的分式方程的解是非正数,则a的取值范围是 .【答案】a1且a2三、解答题1(2010四川眉山)解方程:【答案】解: (2分) 解这个整式方程得: (4分)经检验:是原方程的解原方程的解为(6分)2(2010浙江嘉兴)(2)解方程:错误!未找到引用源。【答案】(2), , 经检验
27、,原方程的解是 4分3(2010 浙江台州市)(2)解方程: 【答案】(2)解: 经检验:是原方程的解所以原方程的解是4(2010 浙江义乌)(2)解分式方程: 【答案】(2) 经检验是原方程的根5(2010 重庆)解方程:【答案】解:方程两边同乘,得 整理,得 解得 经检验,是原方程的解 所以原方程的解是6(2010 福建德化)(8分)如图,点A,B在数轴上,它们所对应的数分别是和,且点A,B到原点的距离相等,-3B0A求的值.【答案】解:依题意可得, 解得:经检验,是原方程的解答:略7(2010江苏宿迁)(本题满分8分)解方程:【答案】解:去分母,得2x-3(x-2)=0 解这个方程,得x
28、 =6 检验:把=6代入x(x-2)=240所以x =6为这个方程的解8(2010 山东济南)解分式方程: =0【答案】解:去分母得:3x-(x+2)=0 解得:x=1 检验x=1 是原方程的增根 所以,原方程无解 9(2010江苏无锡)(1)解方程:;【答案】解:(1)由原方程,得2(x+3)=3x, x=6经检验,x=6是原方程的解,原方程的解是x=610(2010年上海)解方程: 1 = 0【答案】解:x22(x1)2x(x1)=0 2x25x+2=0,x1=2,x2= 经检验,x1=2,x2=为原方程的解,原方程的解为x1=2,x2=11(2010 河北)解方程:【答案】解:, 经检验
29、知,是原方程的解12(2010江西)解方程: 全品中考网【答案】解:方程的两边同乘以,得,解得,检验:当时,所以是原方程的根13(2010 四川巴中)解:分式方程:【答案】去分母得: 经检验是原方程的解。14(2010江苏常州)解方程 【答案】15(2010湖北荆州)解方程:【答案】解: 去分母得: 整理得: 经检验:是原方程的根.16(2010湖北恩施自治州)解方程:【答案】解:去分母:() 检验:将带入公分母中,得x0,所以是原方程的解 17(2010北京)解分式方程: 【答案】解:去分母得 32x=x2 整理得 3x=5 解得 x=经检验,x=是原方程的解。所以,原方程的解是x= 182010山东泰安)(2)解方程:【答案】解(2)原方程可化为 即19(2010黑龙江哈尔滨)先化简,再求代数式【答案】解:原式当原式20(2010江西省南昌)解方程:.【答案】解:方程两边同乘以,得