1、空间向量与立体几何的教学反思向量是一个重要的代数研究对象,引入向量运算,使数学的运算对象发生了一个重大跳跃:从数、字母与代数式到向量,运算也从一元到多元。向量又是一个几何对象,本身既有方向,又有长度;是沟通代数与几何的一个桥梁,是一个重要的数学与物理模型,这些也为进一步学习向量和研究向量奠定了一定的基础。利用向量来解决立体几何问题是学习这部分内容的重点,要让学生体会向量的思想方法,以及如何用向量来表示点、线、面及其位关系。1. 注重联系 本章从数量表示和几何意义两方面,把对向量及其运算的认识从二维情形提升到三维情形。这是“由此及彼,由浅入深” 的认识发展过程。2 体现思想本章以立体几何问题为载
2、体,体现向量的工具作用和向量方法的基本步骤和原理,再次渗透符号化、模型化、运算化和程序化的数学思想。主要思想方法是:(1)类比、猜想、归纳、推广(让学生经历由平面向空间推广的过程);(2)能灵活选择向量法、坐标法与综合法解决立体几何问题。3. 温故知新空间向量的基本概念及其性质是后续学习的前提,由于空间向量是平面向量的推广,空间向量及其运算所涉及的内容与平面向量及其运算类似,所以,空间向量的教学上要注重知识间的联系,温故而知新,运用类比的方法认识新问题,经历向量及其运算由平面向空间推广的过程。4.强调通法(1)向量法有别于传统的纯几何方法,而是将几何元素用向量表示,进行向量运算,再回归到几何问题。这种“三步曲”式的解决问题过程,在数学中具有一般性。(2)三步曲:空间向量表示几何元素利用向量运算研究几何元素间的关系把运算结果翻译成相应的几何意义。 (3)向量运算时注意其几何意义,联系几何问题(如三垂线定理及其逆定理等)加深对有关运算的认识。