收藏 分销(赏)

实数第二课时-(2).doc

上传人:仙人****88 文档编号:6568153 上传时间:2024-12-14 格式:DOC 页数:2 大小:127KB
下载 相关 举报
实数第二课时-(2).doc_第1页
第1页 / 共2页
实数第二课时-(2).doc_第2页
第2页 / 共2页
本文档共2页,全文阅读请下载到手机保存,查看更方便
资源描述
6.3实数(1) 教学目标: 了解无理数和实数的概念,知道实数和数轴上的点一一对应,能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的运算。 教学重点: 实数的意义和实数的分类;实数的运算法则及运算律。 教学难点: 体会数轴上的点与实数是一一对应的;准确地进行实数范围内的运算。 教学过程 一、导入新课: 使用计算器计算,把下列有理数写成小数的形式,你有什么发现? 3 , , , , , 我们发现,上面的有理数都可以写成有限小数或者无限循环小数的形式,即 , , , , , 二、新课: 1、 任何一个有理数都可以写成有限小数或无限循环小数的形式。反过来,任何有限小数或无限循环小数也都是有理数。无限不循环小数又叫无理数,也是无理数;有理数和无理数统称为实数 像有理数一样,无理数也有正负之分。例如,,是正无理数,,,是负无理数。由于非0有理数和无理数都有正负之分,实数也可以这样分类: 2、探究 如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′的坐标是多少? 每一个无理数都可以用数轴上的一个点表示出来,这就是说,数轴上的点有些表示有理数,有些表示无理数,当从有理数扩充到实数以后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大 数的相反数是,这里表示任意一个实数。一个正实数的绝对值是本身;一个负实数的绝对值是它的相反数;0的绝对值是0 3、例1 (1)求下列各数的相反数和绝对值: 2.5,-,,0,,-3 (2) 一个数的绝对值是,求这个数。 三、练习: P86练习1、2 四、小结 1、什么叫做无理数? 2、什么叫做有理数? 3、有理数和数轴上的点一一对应吗? 4、无理数和数轴上的点一一对应吗? 5、实数和数轴上的点一一对应吗? 五、作业: 习题6.3第1、2、3题; 第 2 页 共 2 页
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 小学其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服