资源描述
第十一课时:5.3.2命题、定理
【学习目标】了解命题、定理的概念,能够区分命题的题设和结论.
【学习重点】能够区分命题的题设和结论.
【学习难点】能够区分命题的题设和结论.
【学习过程】
一、学前准备
歌德是18世纪德国的一位著名文艺大师,一天,他与一位批评家“独路相逢”,这位文艺批评家生性古怪,遇到歌德走来,不仅没有相让,反而卖弄聪明,边走边大声说道:“我从来不给傻子让路!”而对如此的尴尬的局面,歌德笑容可掏,谦恭的闪在一旁,有礼貌地回答道“呵呵,我可恰相反”,结果故作聪明的批评家,反倒自讨没趣.你知道为什么吗?
二、探索思考
探索:在日常生活中,我们会遇到许多类似的情况,需要对一些事情作出判断,例如:
⑴今天是晴天;⑵对顶角相等;⑶如果两条直线都与第三条直线平行,那么这两条直线也互相平行.像这样,判断一件事情的语句,叫做命题.
每个命题都是由_______和______组成.每个命题都可以写成.“如果……,那么……”的形式,用“如果”开始的部份是 ,用“那么”开始的部份是 .
像前面举例中的⑵⑶两个命题,都是正确的,这样的命题叫做真命题,即正确的命题叫做______.
例如:“如果一个数能被2整除,那么这个数能被4整除”,很明显是错误的命题,这样的命题叫做假命题,即错误的命题叫做______.
我们把从长期的实践活动中总结出来的正确命题叫做公理;通过正确的推理得出的真命题叫做定理.
练习:
1.下列语句是命题的个数为( )
①画∠AOB的平分线; ②直角都相等; ③同旁内角互补吗? ④若│a│=3,则a=3.
A.1个 B.2个 C.3个 D.4个
2.下列5个命题,其中真命题的个数为( )
①两个锐角之和一定是钝角; ②直角小于夹角; ③同位角相等,两直线平行;
④内错角互补,两直线平行; ⑤如果a<b,b<c,那么a<c.
A.1个 B.2个 C.3个 D.4个
3.下列说法正确的是( )
A.互补的两个角是邻补角 B.两直线平行,同旁内角相等
C.“同旁内角互补”不是命题 D.“相等的两个角是对顶角”是假命题
4.“同一平面内,垂直于同一条直线的两条直线互相平行”是 命题,其中,题设
是 ,结论是 ,
5.将下列命题改写成“如果……那么……”的形式.
(1)直角都相等.
(2)末位数是5的整数能被5整除.
(3)三角形的内角和是180°.
(4)平行于同一条直线的两条直线互相平行.
三、当堂反馈
1.下列语句中不是命题的有( )
⑴两点之间,直线最短;⑵不许大声讲话;⑶连接A、B两点;⑷花儿在春天开放.
A.1个 B.2个 C.3个 D.4个
2.下列命题中,正确的是( )
A.在同一平面内,垂直于同一条直线的两条直线平行;
B.相等的角是对顶角;
C.两条直线被第三条直线所截,同位角相等;
D.和为180°的两个角叫做邻补角.
3.下列命题中的条件(题设)是什么?结论是什么?
(1)如果两个角相等,那么它们是对顶角;
(2)如果两条直线都与第三条直线平行,那么这两条直线也平行;
4.将下列命题改写成“如果……那么……”的形式,并判断正误.
(1)对顶角相等;
(2)同位角相等;
(3)同角的补角相等.
四、学习反思
本节课你有哪些收获?
展开阅读全文