1、第8章课后习题参考答案8-l 铰链四杆机构中,转动副成为周转副的条件是什么?在下图所示四杆机构ABCD中哪些运动副为周转副?当其杆AB与AD重合时,该机构在运动上有何特点?并用作图法求出杆3上E点的连杆曲线。 答:转动副成为周转副的条件是:(1)最短杆与最长杆的长度之和小于或等于其他两杆长度之和;(2)机构中最短杆上的两个转动副均为周转副。图示ABCD四杆机构中C、D为周转副。当其杆AB与AD重合时,杆BE与CD也重合因此机构处于死点位置。8-2曲柄摇杆机构中,当以曲柄为原动件时,机构是否一定存在急回运动,且一定无死点?为什么?答:机构不一定存在急回运动,但一定无死点,因为:(1)当极位夹角等
2、于零时,就不存在急回运动如图所示,(2)原动件能做连续回转运动,所以一定无死点。8-3 四杆机构中的极位和死点有何异同?8-4图a为偏心轮式容积泵;图b为由四个四杆机构组成的转动翼板式容积泵。试绘出两种泵的机构运动简图,并说明它们为何种四杆机构,为什么?解 机构运动简图如右图所示,ABCD是双曲柄机构。因为主动圆盘AB绕固定轴A作整周转动,而各翼板CD绕固定轴D转动,所以A、D为周转副,杆AB、CD都是曲柄。 8-5试画出图示两种机构的机构运动简图,并说明它们各为何种机构。 图a曲柄摇杆机构图b为导杆机构。 8-6如图所示,设己知四杆机构各构件的长度为,,。试问:1)当取杆4为机架时,是否有曲
3、柄存在? 2)若各杆长度不变,能否以选不同杆为机架的办法获得双曲柄机构和双摇杆机构?如何获得? 3)若a、bc三杆的长度不变,取杆4为机架,要获得曲柄摇杆机构,d的取值范围为何值? : 解 (1)因a+b=240+600=840900=400+500=c+d且最短杆 1为连架轩故当取杆4为机架时,有曲柄存在。 (2)、能。要使此此机构成为双曲柄机构,则应取1杆为机架;两使此机构成为双摇杆机构,则应取杆3为机架。(3)要获得曲柄摇杆机构, d的取值范围应为440760mm。8-7图示为一偏置曲柄滑块机构,试求杆AB为曲柄的条件。若偏距e=0,则杆AB为曲柄的条件是什么? 解 (1)如果杆AB能通
4、过其垂直于滑块导路的两位置时,则转动副A为周转副,故杆AB为曲柄的条件是AB+eBC。(2)若偏距e=0, 则杆AB为曲柄的条件是ABBC 8-8 在图所示的铰链四杆机构中,各杆的长度为, ,试求:1)当取杆4为机架时,该机构的极位夹角、杆3的最大摆角、最小传动角和行程速比系数K;2)当取杆1为机架时,将演化成何种类型的机构?为什么?并说明这时C、D两个转动副是周转副还是摆转副;3)当取杆3为机架时,又将演化成何种机构?这时A、B两个转动副是否仍为周转副?解 (1)怍出机构的两个极位,如图, 并由图中量得: =18.6,=70.6, min=22.7 (2)由l1+l4 l2+l3可知图示铰链
5、四杆机构各杆长度符合杆长条件;小最短杆l为机架时,该机构将演化成双曲柄机构;最短杆1参与构成的转动副A、B都是周转副而C、D为摆转副;(3)当取杆3为机架时,最短杆变为连杆,又将演化成双摇杆机构,此时A、B仍为周转副。 8-9 在图示的连杆机构中,已知各构件的尺寸为构件AB为原动件,沿顺时针方向匀速回转,试确定:1)四杆机构ABCD的类型;2)该四杆机构的最小传动角;3)滑块F的行程速比系数K。解 (1)由lAD+lBC40 8-25图示为一牛头刨床的主传动机构,已知lAB=75 mm,lDE=100 mm,行程速度变化系数K=2,刨头5的行程H=300 mm。要求在整个行程中,推动刨头5有较
6、小的压力角,试设计此机构。解 先算导杆的摆角取相应比例尺l作图,由图可得导杆机构导杆和机架的长度为: LCD=l.CD=300mm, lAC=l.AC=150mm;导杆端点D的行程 D1D2=E1E2=H/l为了使推动刨头5在整行程中有较小压力角,刨头导路的位置h成为H=lCD(1+cos(/2)/2=300(1+cos(60/2)/2=279.9mm 点津 本题属于按行程速比系数K设计四杆机构问题,需要注意的是:导杆CD的最大摆角与机构极位夹角相等:因H=300mm,且要求在整个行中刨头运动压力角较小。所以取CD1=CD2=300mm, 则D1D2=H=300mm。8-26某装配线需设计一输
7、送工件的四杆机构,要求将工件从传递带C1经图示中间位置输送到传送带C2上。给定工件的三个方位为:M1(204,-30),21=0;M2(144,80),22=22 ;M3(34,100),23=68 。初步预选两个固定铰链的位置为A(0,0)、D(34,一83)。试用解析法设计此四杆机构。解 由题可知, 本题属于按预定的连杆位置用解析法设汁四杆机构问题,N=3,并已预选xA, yA和xD, yD坐标值,具体计算过程略。8-27 如图所示,设要求四杆机构两连架杆的三组对应位置分别为:,。试以解析法设计此四杆机构。解:(1)将, 的三组对应值带入式(8-17)(初选0=0=0)Cos(+0)=p0
8、cos(+0)+p1cos(+0)-(+0)+p2得 解之得(计算到小数点后四位)p0=1.5815, p1=-1.2637, p2=1.0233(2)如图所示,求各杆的相对长度,得n=c/a=p0=1.5815, l=-n/p=1.2515 (3)求各杆的长度:得d=80.00 a=d/l=80/1.2515=63.923mm b=ma=1.583163.923=101.197mm c=na=1.585163.923=101.094mm8-28试用解析法设计一曲柄滑块机构,设已知滑块的行程速度变化系数K=15,滑块的冲程H=50 mm,偏距e=20 mm。并求其最大压力角max。解:计算并取
9、相应比例尺l根据滑块的行程H作出极位及作圆,作偏距线,两者的交点即铰链所在的位置,由图可得:lAB=l. (AC2-AC1)/2 =17mm, lBC=l. (AC2+AC1)/2=36mm8-29试用解析法设计一四杆机构,使其两连架杆的转角关系能实现期望函数y=,lz10。8-30如图所示,已知四杆机构。ABCD的尺寸比例及其连杆上E点的轨迹曲线,试按下列两种情况设计一具有双停歇运动的多杆机构: 1)从动件摇杆输出角为45: 2)从动件滑块输出行程为5倍曲柄长度。8-31请结合下列实际设计问题,选择自己感兴趣的题目,并通过需求背景调查进一步明确设计目标和技术要求,应用本章或后几章所学知识完成
10、相应设计并编写设计报告。1)结合自己身边学习和生活的需要,设计一折叠式床头小桌或晾衣架,或一收藏式床头书架或脸盆架或电脑架等;2)设计一能帮助截瘫病人独自从轮椅转入床上或四肢瘫痪已失去活动能力的病人能自理用餐或自动翻书进行阅读的机械; 3)设计适合老、中、青不同年龄段使用并针对不同职业活动性质(如坐办公室人员运动少的特点)的健身机械; 4)设计帮助运动员网球或乒乓球训练的标准发球机或步兵步行耐力训练,或空军飞行员体验混战演习训练(即给可能的飞行员各方位加一个重力),或宇航员失重训练(即能运载一人并提供一个重力加速度)的模拟训练机械; 5)设计放置在超市外投币式的具有安全、有趣或难以想像的运动的
11、小孩“坐椅”或能使两位、四位游客产生毛骨悚然的颤动感觉的轻便“急动”坐车。第9章课后参考答案 9-1 何谓凸轮机构传动中的刚性冲击和柔性冲击?试补全图示各段一、一、一曲线,并指出哪些地方有刚性冲击,哪些地方有柔性冲击?答 凸轮机构传动中的刚性冲击是指理论上无穷大的惯性力瞬问作用到构件上,使构件产生强烈的冲击;而柔性冲击是指理论上有限大的惯性力瞬间作用到构件上,使构件产生的冲击。s-, v-, a-曲线见图。在图9-1中B,C处有刚性冲击,在0,A,D,E处有柔性冲击。92何谓凸轮工作廓线的变尖现象和推杆运动的失真现象?它对凸轮机构的工作有何影响?如何加以避免?题9-1图答 在用包络的方法确定凸
12、轮的工作廓线时,凸轮的工作廓线出现尖点的现象称为变尖现象:凸轮的工作廓线使推杆不能实现预期的运动规律的现象件为失真现象。变尖的工作廓线极易磨损,使推杆运动失真使推杆运动规律达不到设计要求,因此应设法避免。变尖和失真现象可通过增大凸轮的基圆半径减小滚子半径以及修改推杆的运动规律等方法来避免。93力封闭与几何封闭凸轮机构的许用压力角的确定是否一样?为什么?答 力封闭与几何封闭凸轮机沟的许用压力角的确定是不一样的。因为在回程阶段-对于力封闭的凸轮饥构,由于这时使推杆运动的不是凸轮对推杆的作用力F,而是推杆所受的封闭力其不存在自锁的同题,故允许采用较大的压力角。但为使推秆与凸轮之间的作用力不致过大。也
13、需限定较大的许用压力角。而对于几何形状封闭的凸轮机构,则需要考虑自锁的问题。许用压力角相对就小一些。94一滚子推杆盘形凸轮机构,在使用中发现推杆滚子的直径偏小,欲改用较大的滚子?问是否可行?为什么?答 不可行。因为滚子半径增大后。凸轮的理论廓线改变了推杆的运动规律也势必发生变化。 95一对心直动推杆盘形凸轮机构,在使用中发现推程压力角稍偏大,拟采用推杆偏置的办法来改善,问是否可行?为什么?答 不可行。因为推杆偏置的大小、方向的改变会直接影响推杆的运动规律而原凸轮机构推杆的运动规律应该是不允许擅自改动的。 9-6 在图示机构中,哪个是正偏置?哪个是负偏置?根据式(9-24)说明偏置方向对凸轮机构
14、压力角有何影响?答 由凸轮的回转中心作推杆轴线的垂线得垂足点,若凸轮在垂足点的速度沿推杆的推程方向刚凸轮机构为正偏置反之为负偏置。由此可知在图示机沟中,两个均为正偏置。由 可知在其他条件不变的情况下。若为正偏置(e前取减号)由于推程时(ds/d)为正式中分子ds/d-edsd。故压力角增大。负偏置时刚相反,即正偏置会使推程压力角减小,回程压力角增大;负偏置会使推程压力角增大,回程压力角减小。97 试标出题96a图在图示位置时凸轮机构的压力角,凸轮从图示位置转过90后推杆的位移;并标出题96b图推杆从图示位置升高位移s时,凸轮的转角和凸轮机构的压力角。解 如图 (a)所示,用直线连接圆盘凸轮圆心
15、A和滚子中心B,则直线AB与推杆导路之间所夹的锐角为图示位置时凸轮机构的压力角。以A为圆心, AB为半径作圆, 得凸轮的理论廓线圆。连接A与凸轮的转动中心O并延长,交于凸轮的理论廓线于C点。以O为圆心以OC为半径作圆得凸轮的基圆。以O为圆心, 以O点到推杆导路的距离OD为半径作圆得推杆的偏距圆;。延长推杆导路线交基圆于G-点,以直线连接OG。过O点作OG的垂线,交基圆于E点。过E点在偏距圆的下侧作切线切点为H点交理论廓线于F点,则线段EF的长即为凸轮从图示位置转过90后推杆的位移s。方法同前,在图 (b)中分别作出凸轮的理论廓线、基圆、推杆的偏距圆。延长推杆导路线交基圆于G点,以直线连接OG。
16、以O为圆心,以滚子中心升高s后滚子的转动中心K到O点的距离OK为半径作圆弧,交理论廓线于 F点。过F点作偏距圆的切线,交基圆于E点,切点为H。则GOE为推杆从图示位置升高位移s时-凸轮的转角,AFH为此时凸轮机构的压力角。 (a) (b)98在图示凸轮机构中,圆弧底摆动推杆与凸轮在B点接触。当凸轮从图示位置逆时针转过90。时,试用图解法标出: 1)推杆在凸轮上的接触点; 2)摆杆位移角的大小;3)凸轮机构的压力角。 解 如图所示,以O为圆心,以O点到推杆转动中心A的距离AO为半径作圆,得推杆转动中心反转位置圆。过O点怍OA的垂线,交推杆转动中心反转位置圆于D点。 以O为圆心以O点到推杆圆弧圆心
17、C的距离CO为半径作圆得凸轮的理论廓线。 以O为圆心,作圆内切于凸轮的理论廓线圆,得凸轮的基圆。 以D为圆心,以AC为半径作圆弧,交凸轮的理论廓线于E点,交凸轮的圆于G点。用直线连接EO,交凸轮的实际廓线于F点,此即为推杆在凸轮上的接触点;而GDE即为摆杆的位移角;过E点并垂直于DE的直线与直线EF间所夹的锐角即为此时凸轮机构的压力角。 99 已知凸轮角速度为15 rads,凸轮转角时,推杆等速上升16mm; 时推杆远休,时推杆下降16mm;时推杆近休。试选择合适的推杆推程运动规律,以实现其最大加速度值最小,并画出其运动线图。解 推杆在推程及回程段运动规律的位移方程为:(1)推程:s=h0 0
18、1 50(2)回程:等加速段s=h一2h202 060 等减速段s=2h(一)202 60120计算各分点的位移值如表93:根据表9-3可作所求图如下图: 910设计一凸轮机构,凸轮转动一周时间为2 s。凸轮的推程运动角为60,回程运动角为150。,近休止运动角为150。推杆的行程为15 mm。试选择合适的推杆升程和回程的运动规律,使得其最大速度值最小,并画出运动线图。 9一11试设计一对心直动滚子推杆盘形凸轮机构,滚子半径r,=10 mm,凸轮以等角速度逆时针回转。凸轮转角=0120时,推杆等速上升20 mm;=120180时,推杆远休止;=180270时,推杆等加速等减速下降20 mm;=
19、270:360时,推杆近休止。要求推程的最大压力角。30,试选取合适的基圆半径,并绘制凸轮的廓线。问此凸轮机构是否有缺陷,应如何补救。9一12试设计一个对心平底直动推杆盘形凸轮机构凸轮的轮廓曲线。设已知凸轮基圆半径rn=30 mm,推杆平底与导轨的中心线垂直,凸轮顺时针方向等速转动。当凸轮转过1201r推杆以余弦加速度运动上升20。,再转过150时,推杆又以余弦加速度运动回到原位,凸轮转过其余90时,推杆静止不动。问这种凸轮机构压力角的变化规律如何?是否也存在自锁问题?若有,应如何避免?解 推杆在推程及回程运动规律的位移方程为 (1)推程 S=h1-cos(/0)/2: 0120 (2)回程
20、S=h1+cos(/0)/2 01 50 计算各分点的位移值如表9-4l:根据表9-4可作所求图如下图:这种凸轮机构的压力角为一定值,它恒等于平底与导路所夹锐角的余角与其他因素无关。这种凸轮机构也会是存在自锁问题,为了避免自锁在设计时应该在结构许可的条件下,尽可能取较大的推杆导路导轨的长度。并尽可能减小推gan 9的悬臂尺寸。9一13 一摆动滚子推杆盘形凸轮机构(参看图923),已知lOA=60 mmr0=25 mm,lAB=50 mm,rr=8 mm。凸轮顺时针方向等速转动,要求当凸轮转过180时,推杆以余弦加速度运动向上摆动25;转过一周中的其余角度时,推杆以正弦加速度运动摆回到原位置。试
21、以作图法设计凸轮的工作廓线。解 推扦在推程及回程段运动规律的位移方程为 (1)推程:s=1-cos(/0)/2 0180 (2)回程:s=1-(/0)十sin(2/0)/(2) o180 计算各分点的位移值如表95:根据表9。5作图如图所示914试设计偏置直动滚子推杆盘形凸轮机构凸轮的理论轮廓曲线和工作廓线。已知凸轮轴置于推杆轴线右侧,偏距e=20 mm,基圆半径r。=50 mm,滚子半径r,=10 mm。凸轮以等角速度沿顺时针方向回转,在凸轮转过角占,:120。的过程中,推杆按正弦加速度运动规律上升矗=50 mm;凸轮继续转过炙=30。时,推杆保持不动;其后,凸轮再回转角度如=60时,推杆又
22、按余弦加速度运动规律下降至起始位置;凸轮转过一周的其余角度时,推杆又静止不动。解 (1)汁算推杆的位移并对凸轮转角求导: 当凸轮转角在o23过程中,推杆按正弦加速度运动规律上升h=50 rnm。则 可得 02/3 02/3 当凸轮转角占在2356过程中,推杆远休。 S=50 , 2356 ds/d=0, 2/356 当凸轮转角在5/676过程中,推杆又按余弦加速度运动规律下降至起始位置。则 可得 5676 5676当凸轮转角在7/62过程中,推杆近休。 S=0 762 ds/ d=0 72 (2)计算凸轮的理论廓线和实际廓线: i 本题的计算简图如图(a)所示。选取坐标系如图 (b)所示,由图
23、(b)可知,凸轮理论廓线上B点(即滚子中心)的直角坐标为 : x=(s0+s)cos-esin y=(s0+s)sin+ecos式中:s0=(r02-e2)1/2=(502-202)1/2=45.826mm 由图 (b)可知凸轮实际廓线的方程即B点的坐标方程式为 i x=x-rrcos Y=y-rrsin 因为 dy/d=(ds/d-e)sin+(s0+s)cos dx/d=(ds/d-e)cos-(s0-s)sin所以 故 x=x-10cos y=y-10sin 由上述公式可得理论轮廓曲线和工作廓线的直角坐标计算结果如表96凸轮廓线如下图昕示。915图示为一旅行用轻便剃须刀,图a为工作位置,
24、图b为正在收起的位置(整个刀夹可以收入外壳中)。在刀夹上有两个推杆A、B,各有一个销A、B,分别插入外壳里面的两个内凸轮槽中。按图a所示箭头方向旋转旋钮套时(在旋钮套中部有两个长槽,推杆上的销从中穿过,使两推杆只能在旋钮套中移动,而不能相对于旋钮套转动),刀夹一方面跟着旋钮套旋转,并同时从外壳中逐渐伸出,再旋转至水平位置(工作位置)。按图b所示箭头方向旋转旋钮套时,刀夹也一方面跟着旋钮套旋转,并先沿逆时针方向转过900成垂直位置,再逐渐全部缩回外壳中。要求设计外壳中的两凸轮槽(展开图),使该剃须刀能完成上述动作,设计中所需各尺寸可从图中量取,全部动作在旋钮套转过2角的过程中完成。 解 由题意知
25、。两推杆相差180布置,所以它们各自对应的凸轮槽应为等距线。当两销予都到达推杆B的最高位置时推杆B不再升高而推轩A继续升高,此段推杆B对应的凸轮槽应为水平的,而推杆A对应的凸轮槽不变。为了安装方便将推杆AB所对应的凸轮槽与端部连通。为了保证能同时将A,B推杆以及旋钮套从外壳中取出将凸轮槽适当向水平方向伸展。据此没计凸轮槽展开图如图所示。 图中第l位置为两推杆最下位置时情况:第4位置为推杆B不再上升而推杆A继续上升的情况;第5位置为题图中的工作位置。第6,7位置是装拆时的位置。第11章课后参考答案11-1在给定轮系主动轮的转向后,可用什么方法来确定定轴轮系从动轮的转向?周转轮系中主、从动件的转向
26、关系又用什么方法来确定?答:参考教材216218页。11-2如何划分一个复合轮系的定轴轮系部分和各基本周转轮系部分?在图示的轮系中,既然构件5作为行星架被划归在周转轮系部分中,在计算周转轮系部分的传动比时,是否应把齿轮5的齿数,Z5计入? 答:划分一个复合轮系的定轴轮系部分和各基本周转轮系部分关键是要把其中的周转轮系部分划出来,周转轮糸的特点是具有行星轮和行星架,所以要先找到轮系中的行星轮,然后找出行星架。每一行星架,连同行星架上的行星轮和与行星轮相啮合的太阳轮就组成一个基本周转轮糸。在一个复合轮系中可能包括有几个基本周转轮系(一般每一个行星架就对应一个基本周转轮系),当将这些周转轮一一找出之
27、后剩下的便是定轴轮糸部分了。在图示的轮系中虽然构件5作为行星架被划归在周转轮系部分中,但在计算周转轮系部分的传动比时不应把齿轮5的齿数计入。11-3在计算行星轮系的传动比时,式imH=1-iHmn只有在什么情况下才是正确的? 答 在行星轮系,设固定轮为n, 即n=0时, imH=1-iHmn公式才是正确的。11-4在计算周转轮系的传动比时,式iHmn=(nm-nH)(nn-nH)中的iHmn是什么传动比,如何确定其大小和“”号?答: iHmn是在根据相对运动原理,设给原周转轮系加上一个公共角速度“-H”。使之绕行星架的固定轴线回转,这时各构件之间的相对运动仍将保持不变,而行星架的角速度为0,即
28、行星架“静止不动”了于是周转轮系转化成了定轴轮系,这个转化轮系的传动比,其大小可以用iHmn=(nm-nH)(nn-nH)中的iHmn公式计算;方向由“”号确定,但注意,它由在转化轮系中m. n两轮的转向关系来确定。11-5用转化轮系法计算行星轮系效率的理论基础是什么?为什么说当行星轮系为高速时,用它来计算行星轮系的效率会带来较大的误差?答: 用转化轮系法计算行星轮系效率的理论基础是行星轮系的转化轮系和原行星轮系的差别,仅在于给整个行星轮系附加了一个公共角速度“-H”。经过这样的转化之后,各构件之间的相对运动没有改变,而轮系各运动副中的作用力(当不考虑构件回转的离心惯性力时)以及摩擦因数也不会
29、改变。因而行星轮系与其转化轮系中的摩擦损失功率PHf应相等。用转化轮系法计算行星轮系效率没有考虑由于加工、安装和使用情况等的不同,以及还有一些影响因素如搅油损失、行星轮在公转中的离心惯性力等,因此理论计算的结果并不能完全正确地反映传动装置的实际效率。11-6何谓正号机构、负号机构?各有何特点?各适用于什么场合?答: 行星轮系的转化轮系中当传动比iH1no,称为正号机构;当传动比iH1nl ibl时,出现封闭功率流。这种封闭的功率流将增大摩擦功率损失,使轮系的效率和强度降低,对于传动极为不刊。11-8在确定行星轮系各轮齿数时,必须满足哪些条件,为什么?答 设计行星轮系时,各轮齿数的选择应满足四个
30、条件;对于不同的轮系,这四个条件具体表达式不尽相同,下面以内齿轮3固定,各轮均为标准齿轮的2KH型轮系为例加以说明。(1)保证实现给定的传动比: z3=(i1H-1)z1(2)满足同心条件(即保证两太阳轮和系杆的轴线重合): Z3=z1+2z2(3)满足k个行星轮均布安装(即满足装配条件): N=(z3+z1)/k (n为整数)(4)满足邻接条件(即保证相邻行星轮不致相互碰撞): (z1+z2)sin(180/k)z2+2ha*11-9在行星轮系中采用均载装置的目的何在?采用均载装置后会不会影响该轮系的传动比?答 在行星轮系中,常把某些构件作成可以浮动的在轮系运转中,如各行星轮受力不均匀。这些
31、构件能在一定的范围内自由浮动,以达到自动调节各行星轮载荷的目的。采用均载装置后不会影响该轮系的传动比。11-10何谓少齿差行星传动?摆线针轮传动的齿数差是多少?在谐波传动中柔轮与刚轮的齿数差如何确定?答 少齿差行星传动是指在行星轮系中当行星轮1与内齿轮2的齿数差z=z2-z1=14时就称为少齿差行星传动;摆线针轮传动的齿数差是1;在谐波传动中柔轮与刚轮的齿距相同但齿数不等,刚轮与柔轮的齿数差通常等于波数n,即zr-zs=n011-11图示为一手摇提升装置,其中各轮齿数均为已知,试求传动比i15并指出当提升重物时手柄的转向。 解:当提升重物时手柄的转向逆时针(从左向右看手柄)。11-12图示为一
32、千分表的示意图,已知各轮齿数如图,模数m=0.11mm(为非标准模数)若要测量杆1每移动0.001 mm时,指针尖端刚好移动一个刻度(s=1.5 mm)。问指针的长度尺等于多少?(图中齿轮5和游丝的作用是使各工作齿轮始终保持单侧接触,以消除齿侧间隙对测量精度的影响。) 解:由图可知,轮2(2)、3、(3)、4、5组成定轴轮系且n2=n2, n3=n3 n4=-100n2杆1和齿轮2是一对齿条与齿轮的外啮合,设杆1每移动0.001时间为t 由图知,指针摆一个刻度的s=1.5mm则摆角有关系式 =s/R即 =n4t=s/R则 11-13图示为绕线机的计数器。图中1为单头蜗杆,其一端装手把,另一端装绕制线圈。2、3为两个窄蜗轮,z2=99,Z3=100。在计数器中有两个刻度盘,在固定刻度盘的一周上有100个刻度,在与蜗轮2固连的活动刻度盘的一周上有99个刻度,指针与蜗轮3固