资源描述
6.3 实数
第1课时 实数
教学目标
1.了解无理数和实数的概念,会将实数按一定的标准进行分类.
2.知道实数与数轴上的点一一对应.
3.了解无理数和实数的概念,适时拓展数的观念.
4.通过学习“实数与数轴上的点的一一对应关系”,渗透“数形结合”思想.
5.从分类、集合的思想中领悟数学的内涵,激发兴趣.
教学重点
正确理解实数的概念.
教学难点
对“实数与数轴上的点一一对应关系”的理解.
教学过程
一、情境导入,初步认识
问题 请学生回忆有理数的分类,及与有理数相关的概念等.教师引导得出下列结论:任何一个有理数都可以写成有限小数或无限循环小数的形式,如
等.
引导学生反向探讨:任何一个有限小数或无限循环小数都能化成分数吗?
【教学说明】任何一个有限小数和一个无限循环小数都可以化成分数,所以任何一个有限小数和一个无限循环小数都是有理数.
二、思考探究,获取新知
例1 (1)试着写出几个无理数.
(2)判断下列各数中,哪些是有理数?哪些是无理数?
由学生共同完成上述问题后,要求学生思考:
1.如何把实数分类?
2.用根号形式表示的数一定是无理数吗?
出示实数分类表:
【教学说明】指导学生认识两种分类方式的异同,并特别强调“0”在表中的位置,考虑问题时不能忘记特殊数——0.
例2 将例1(2)中各数填入相应括号内.
整数集合{ ……}
正数集合{ ……}
有理数集合{ ……}
负数集合{ ……}
无理数集合{ ……}
由学生完成填空后探究:
每个有理数都可以用数轴上的点表示,无理数是否也可以用数轴上的点表示呢?
例3 如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′表示的数是什么?由这个图示你能想到什么?
解:由图可知,OO′的长是这个圆的周长π,所以O′点表示的数是π,由此可知,数轴上的点可以表示无理数.
结合教材内容,让学生找到数轴上表示2,3,…等的点.
【教学说明】每一个无理数都可以用数轴上的一个点表示出来,数轴上的点有些表示有理数,有些表示无理数.实数与数轴上的点是一一对应的.
例4下列说法错误的是( ).
A.的平方根是±2 B.是无理数
C.是有理数 D.是分数
三、运用新知,深化理解
1.下列各数中,不是无理数的是( )
2.下列各数中:
其中无理数有 .
有理数有 .
四、师生互动,课堂小结
通过这节课的学习,你掌握了哪些新知识?你还有哪些问题,与同伴交流.
展开阅读全文