资源描述
数量关系
教学要求:
1.使学生初步认识单价、数量和总价,速度、时间和路程的含义,理解、掌握这两组数量关系。
2.初步培养学生运用数学术语的能力,以及综合、抽象、概括等思维能力,并渗透事物之间相互联系的观点。教学目标
知识与技能::
使学生理解单价、速度的概念,掌握单价×数量=总价、速度×时间=路程这两组数量关系。
过程与方法:
引导学生自主探索 速度×时间=路程这组数量关系,并应用它去解决问题
情感、态度和价值观:
提高学生学习的兴趣,扩大认知视野,使学生感受人类创造交通工具的智慧和自然界的多姿多彩。
重点
使学生理解单价、速度的概念,掌握单价×数量=总价、速度×时间=路程这两组数量关系。
难点 应用数量关系解决实际问题
教学过程:
一、复习旧知
1.口答列式。
(1)每个文具盒10元,5个文具盒多少钱?
(2)50元钱买文具盒,每个10元,可以买多少个?
(3)50元钱买了5个同样的文具盒,每个多少钱?
指名学生口答,老师板书。
2.学生列式。
(1)一辆汽车每小时行50千米,3小时行多少千米?
(2)一辆汽车行了150千米,每小时行50千米,行了多少小时?
(3)一辆汽车3小时行了150千米,平均每小时行多少千米?
学生在练习本上列算式,然后口答、校对。
二、教学新课
1.引入新课。
我们已经学习过许多应用题,知道在工农业生产和日常生活里,有各种数量关系,并且已接触了许多数量关系。像上面做的题里有哪些数量呢,这些数量之间有怎样的关系呢,今天,我们就一起来学习一些常见的数量关系(板书课题)。
2.教学例1。
(1)出示例1,学生读题。
让学生在课本上列式解答。
学生口答算式和得数,老师板书。
(2)教学单价、数量和总价的含义。
提问:这两道题都是说的哪一方面的事?
这两道题的条件有什么共同的特点?都是求怎样的问题?
说明:这两道题都是讲的买商品的价钱的事,这里的每枝铅笔2角、每个排球55元,这样的每一件商品的价钱是单价,(板书:单价)3枝、4个这样买的件数是数量,(板书:数量)一共用的钱是总价(板书:总价)。
提问:你的数学书的单价是多少?你知道自己文具盒的单价吗?
请你来说一说下面的单价、数量和总价。
学校买20套校服,花了600元,每套30元。
(3)概括单价、数量和总价的数量关系。
谁来说一说,第(1)题里铅笔的单价、数量各是多少,求出了什么?是怎样求的?第(2)题里的单价、数量各是多少?求的什么?怎样求的?这两题在计算方法上有什么共同的特点?
从上面的两题里,你发现单价、数量和总价之间有怎样的数量关系(板书:单价×数量=总价)?
[评析:让学生观察不同的数量,思考求的什么数量,是怎样求的,既可以巩固刚学到的量的概念,又是对这两题计算方法的分析。接着引导寻找共同特点,归纳数量关系,就是在分析的基础上启发学生综合、抽象和概括。这样教学,可以使学生在对具体问题的感知、分析的基础上认识抽象的数量关系,不仅有利于学生的理解,也有利于培养学生初步的逻辑思维能力。]
提问:请同学们根据这个关系想一想,如果知道总价和单价,可以求什么?怎样求(板书:总价÷单价=数量)?
追问:为什么求数量用总价除以单价?
提问:再想一想,如果知道总价和数量,可以求什么?怎样求?你是怎样想到的(板书:总价÷数量=单价)?
(4)现在请同学们看一看这里一组三个数量关系式,它们之间有着密切的联系。你觉得只要记住了哪一个,就能记住其他的两个?根据什么知识来记其他的两个?
小结:我们从这里的三个数量关系式可以看出,根据单价、数量和总价三个量的关系,只要知道两个量,就可以求出第三个量。我们在记这一组数量关系式时,只要记住“单价×数量=总价”,就可以根据乘法算式各部分之间的关系,想出“总价÷单价=数量”和“总价÷数量=单价”。
3.组织练习。
(1)做“练一练”第1题。
读题。提问:例1的数量关系是什么?
指名学生先口头举出例子,说明求总价的问题。
提问:谁还能举一个求数量的例子?求单价的呢?
(2)做“练一练”第2题。
指名三人板演,其余学生做在课本上。
集体订正。
提问:这里应用了哪几个数量关系式?在单价、数量和总价三个量里,要求一个量,需要知道几个量?
指出:在单价、数量和总价里,只要知道其中的两个量,就可以求出第三个量。
4.教学例2。
(1)出示例2,学生读题。
让学生在课本上列式解答。
学生口答算式和得数,老师板书。
(2)提问:这两道题都是说的哪一方面的事,也就是行程问题,其中每小时45千米、每分钟行70米这样在一个单位时间里行的路程,是速度,(板书:速度)所用的2小时、6分是行走的时间,(板书:时间)求出的90千米、420米这样的一共行的路是路程。(板书:路程)
(3)提问:第(1)题里汽车的速度是多少?行走的时间呢?求出的结果是什么数量?是怎样求的?
第(2)题里小东行走的速度和时间各是多少?求出的是什么?怎样求的?
这两题在计算方法上有什么共同特点?
从这两题里,你发现了速度、时间和路程之间有怎样的关系(板书:速度×时间=路程)?
提问:如果知道路程和速度,可以求什么?时间怎样求?你是怎样想到的(板书:路程÷速度=时间)?
根据数量关系式,求速度需要哪两个条件?怎样求?为什么要这样求(板书:路程÷时间=速度)?
(4)这里主要记住哪一个,就能记住其他的两个?根据什么知识可以从乘法的关系式想出其他的两个?
请大家把这三个数量关系式齐读一遍。
小结:速度、时间和路程是一组联系紧密的数量,只要知道其中的两个量,就可以求出第三个量。记这一组数量关系式时,只要记住“速度×时间=路程”,就可以根据乘除法的关系,想出“路程÷速度=时间”、“路程÷时间=速度”。
5.组织练习。
(1)下面的条件中各是什么数量关系?
①轮船5小时行125千米。
②火车从南京到上海每小时行驶61千米,共行驶305千米。
③小华从家到学校要走800米,小华要走16分钟,每分钟走50米。
(2)做“练一练”第3题。
读题。让学生举例说明求路程的问题。
哪位同学举出一个求时间的问题?你能举出一个求速度的问题吗?
(3)做“练一练”第4题。
指名学生说数量关系。
指名三人板演,其余学生做在练习本上。
集体订正。
提问:怎样求路程?怎样求时间?求速度呢?
三、课堂小结
这堂课学习的是哪两组常见的数量关系?你能具体说一说这两组数量关系吗?我们主要记住哪两个,就能想出其余的数量关系式吗?
四、布置作业
课堂作业:练习十二第1、2题。
反思
单价×数量=总价这一数量关系,学生在日常生活和以前解答各种应用题时都遇到过,只是没有加以概括,形成规律性的认识。本课的关键是如何通过实际的例子,使学生理解和掌握以及能用术语表达这些数量关系,并能在解答应用题和实际问题中加以运用。在设计时,我充分考虑学生的特点,努力实现以下几点:
挖掘生活中的数学,发现数学。
数学源于生活,生活中到处有数学。教师要善于结合课堂教学内容,去采撷生活中的数学实例。因此,课前我就给学生布置了一个作业,让他们亲自到超市购买一种所需的物品,并且了解这种商品的价钱,以及购买了多少和一共用的钱数。课上,把学生从生活中自己搜集到的这些细息写到黑板上,再让学生解答。由于这些题来源于学生的生活实际,因此学生的兴趣极高,这就为后面的学习做好了铺垫。
引导学生主动参与,促进学生主动思考。
小学生具有强烈的好奇心和要求独立的意识。因此,在课堂上应把内容放手交给学生,为他们提供独立思考,独立解决问题的时间和空间。在本节课上,我并没有简单地把数量关系告诉学生,而是让学生找找黑板上的这些题有哪些相同点,引导他们通过小组合作,讨论,共同探究出单价×数量=总价这一数量关系,使每一个学生真正成为学习的主人。
精心设计练习,发展应用意识。
练习是数学课堂教学的重要环节。它不仅是学生掌握知识,发展能力的重要手段,也是学生巩固知识、应用知识的重要环节。因此,在本节课上,我精心设计与日常生活相联系的内容,创设运用数学知识的机会,让学生在练习中更加深刻地体验数学的应用价值。如:“让学生用40元钱,购买水果。”购买多少,购买几种,全由学生自己做主,一下子就激发了学生的兴趣。这样,既联系了学生的生活实际,又突出了应用意识的培养。
这节课虽然较好地完成了教学任务,但在教学方法上仍存在着一些问题:如留给学生合作交流地机会和时间明显不足,学生真正投入的有思维碰撞的讨论不多,对学生的评价还不能尊重学生的个性,还不能以不同的标准,从不同的角度,给予学生不同的评价。
总之,通过对本节课的精心设计和有效引导,让学生真正经历探索和发现的过程,学生不仅学到了数学知识,更重要的是让学生体会到了学习的兴趣,获得了成功的喜悦。
展开阅读全文