收藏 分销(赏)

利用带有改进算子矩阵的模块脉冲函数求非线性随机微分方程数值解.pdf

上传人:自信****多点 文档编号:648474 上传时间:2024-01-23 格式:PDF 页数:10 大小:226.21KB
下载 相关 举报
利用带有改进算子矩阵的模块脉冲函数求非线性随机微分方程数值解.pdf_第1页
第1页 / 共10页
利用带有改进算子矩阵的模块脉冲函数求非线性随机微分方程数值解.pdf_第2页
第2页 / 共10页
利用带有改进算子矩阵的模块脉冲函数求非线性随机微分方程数值解.pdf_第3页
第3页 / 共10页
亲,该文档总共10页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、应用数学MATHEMATICA APPLICATA2023,36(4):1059-1068Numerical Solution of NonlinearStochastic Differential Equations byBlock Pulse Functions with ImprovedOperator MatrixJIANG Guo(姜国),LIU Fugang(刘富钢),CHEN Dan(陈丹)(School of Mathematics and Statistics,Hubei Normal University,Huangshi 435002,China)Abstract:Thi

2、s paper introduces an effective numerical method based on the blockpulse functions with improved operator matrix to solve the nonlinear stochastic differentialequations.The nonlinear stochastic differential equation is transformed into a set ofalgebraic equations by the improved operator matrix of b

3、lock pulse function.Furthermore,we perform an error analysis and demonstrate that the method converges faster.Finally,numerical examples are used to support the method.Key words:Stochastic differential equation;Improved operator matrix;Block pulsefunctionCLC Number:O211.6AMS(2010)Subject Classificat

4、ion:60H20;45D99;65C30Document code:AArticle ID:1001-9847(2023)04-1059-101.IntroductionTheoretical foundation of stochastic differential equations(SDEs)was established in the1960s.With the rapid development of the theory of stochastic analysis,SDE had been widelyused in system science,engineering sci

5、ence and ecological science.However,it is difficultto obtain an exact solution for SDE.It makes sense to discuss numerical solutions to theequations110.Many authors have contributed in these areas.For instance,Akinbo et al.11introducedthe main concepts and techniques necessary for those wishing to p

6、erform numerical experi-ments involving SDEs.PEI et al.12have discussed the stochastic averaging for SDEs.Kloe-den and Platen13discussed the numerical solution of SDEs.JIANG and Schaufelberger14applied block pulse functions(BPFs)to control systems.Heydari et al.15illustrated theaccuracy and effectiv

7、eness of the generalized hat functions method.SANG et al.16proposedan effective numerical method to solve nonlinear stochastic It o-Volterra integral equations.On the other hand,Maleknejad et al.17introduced a method for solving stochastic Volter-ra integral equations,but the results are not very ac

8、curate.Therefore,we use BPFs withReceived date:2022-12-25Foundation item:Supported by the NSF Grant of Hubei Province(2022CFD042,2023AFD013)Biography:JIANG Guo,male,Han,Hubei,professor,major in stochastic integral equation.1060MATHEMATICA APPLICATA2023improved operator matrix to solve the following

9、general nonlinear SDEs(1.1)or(1.2).Theadvantage of this method is that the calculation is simpler and the numerical solution is moreaccurate.dv(t)=F1(t,v(t)dt+F2(t,v(t)dW(t),v(0)=v0,t 0,1),(1.1)orv(t)=v0+t0F1(s,v(s)ds+t0F2(s,v(s)dW(s),0 s t 1,(1.2)where v(t)is unknown stochastic processes,v0is the i

10、nitial value,F1(t,v)and F2(t,v)areknown analytic functions,and W(t)is standard Brownian motion.In Section 2,we consider the properties and definition of the BPFs,and show the im-proved operator matrix and the stochastic integral operator matrix of the BPFs.In Section 3,the numerical method of the no

11、nlinear integral equation(1.2)is obtained.In Section 4,erroranalysis is presented.In Section 5,some numerical examples illustrate the method.Section6 is the conclusion.2.PreliminaryIn this section,the improved operator matrix and the stochastic integral operator matrixof BPFs are introduced.We defin

12、e the BPFs asp(t)=1,(p 1)h t 0,p=1,4are positive constants and k1,k2 0,1).ThenT0E(?em(t)?2)dt=T0E(?v(t)vm(t)?2)dt O(h2),T 0,1).(4.4)ProofFor(4.3),we obtainE(?em(t)?2)3E(?v0 v0m?2)+E(?t0F1(s,v(s)F1(sm,vm(s)ds?2)+E(?t0F2(s,v(s)F2(sm,vm(s)dW(s)?2).No.4JIANG Guo,et al.:Numerical Solution of Nonlinear St

13、ochastic Differential Equations1065By using the Lipschitz conditions and Cauchy-Schwartz inequality,we getE(?em(t)?2)3E(?v0 v0m?2)+E(t0?F1(s,v(s)F1(sm,vm(s)?2ds)+E(t0?F2(s,v(s)F2(sm,vm(s)?2ds)3?v0 v0m?2+t0E(1?s sm?+3?v(s)vm(s)?)2ds+t0E(2?s sm?+4?v(s)vm(s)?)2ds3?v0 v0m?2+221t0?s sm?2ds+223t0E(?em(s)?

14、2)ds+222t0?s sm?2ds+224t0E(?em(s)?2)ds.Then,we can getE(?em(t)?2)3?v0 v0m?2+2(21+22)t0?s sm?2ds+6(23+24)t0E(?em(s)?2)ds,orE(?em(t)?2)(t)+t0E(?em(s)?2)ds,(t)=3?v0 v0m?2+2(21+22)t0?s sm?2ds,=6(23+24).Letg(t)=E(?em(t)?2).We getg(t)(t)+t0g()d,0,1).According to Gronwalls inequality,we getg(t)(t)+t0e(t)()

15、d,t 0,1).ThenT0g(t)dt=T0E(?em(t)?2)dt T0(t)+t0e(t)()d)dt=T0(t)dt+T0t0e(t)()ddtT0(t)dt+eTT0t0()ddt=3T0?v0 v0m?2dt+6(21+22)T0t0?s sm?2dsdt+eT3T0t0?v0 v0m?2ddt+6(21+22)T0t00?s sm?2dsddt:=3I1+6(21+22)I2+eT3I3+6(21+22)I4,1066MATHEMATICA APPLICATA2023by using Lemma 4.1 and Lemma 4.2,we haveIp wph2.SoT0E(?

16、em(t)?2)dt 3w1+6(21+22)w2+eT(3w3+6(21+22)w4)h2 O(h2),where wp,p=1,4,are independent nonnegative constants.The proof is completed.5.Some ExampleIn this section,we show some numerical examples.Example 5.113Consider the nonlinear SDEdv(t)=z2cos(v(t)sin3(v(t)dt zsin2(v(t)dW(t),t 0,1),the exact solution

17、isv(t)=arccot(zW(t)+cot(v0).This example is solved for z=120and v0=120.The error standard deviations VS,error means VE,and confidence intervals for error mean of Example 5.1 with m=32 andm=64 are given in Tab.5.1 and Tab.5.2,respectively.The simulation result of the exactand approximate solution of

18、the Example 5.1 are given in Fig.5.1 for m=32 and are shownin Fig.5.2 for m=64.The Legendre wavelet Galerkin method uses the integral operatormatrix of the general BPFs,and obtains the absolute errors of the approximate solution bynumerical examples.Compared with the method described in this paper,i

19、t can be seen fromthe error means of the table below that our accuracy rate(109)is higher than that of theLegendre wavelet Galerkin method(106)in 4.Tab.5.1When m=32,numerical results of Example 5.1tVEVS95%confidence intervalUpperLower1327.260847751093.630423871091.437647851081.4521695510102322.88356

20、9941091.441784971095.709468491095.7671398910113321.569868191087.849340951093.108339011083.1397363810104322.461167441081.230583721084.873111541084.9223348910105324.307197271082.153598631088.528250611088.614394551010Tab.5.2When m=64,numerical results of Example 5.1tVEVS95%confidence intervalUpperLower

21、1642.659910251091.329955121095.266622291095.3198205010112647.536324741093.768162371091.492192291081.5072649410103641.640491401088.202457001093.248172971083.2809828010104642.084357421081.042178711084.127027701084.1687148510105642.483186651081.241593321084.916709571084.966373311010Example 5.26Consider

22、 the nonlinear SDEdv(t)=etsin(v(t)dt+etcos(v(t)dW(t),t 0,1).Let v0=3,the simulation results for m=32 and m=64 are severally given in Fig.5.3 and Fig.5.4.These two figs also show that the approximate solution fluctuates aroundthe mean orbit,where the mean solution is obtained by 104trajectories.No.4J

23、IANG Guo,et al.:Numerical Solution of Nonlinear Stochastic Differential Equations106700.10.20.30.40.50.60.70.80.910.049950.050.050050.05010.050150.05020.05025Approximation solutionExact solutionFig.5.1When m=32,exact andapproximate solutions00.10.20.30.40.50.60.70.80.910.049950.050.050050.0501Approx

24、imation solutionExact solutionFig.5.2When m=64,exact andapproximate solutions00.10.20.30.40.50.60.70.80.91-3.2-3.15-3.1-3.05-3-2.95-2.9-2.85-2.8-2.75Approximation solutionMean solutionFig.5.3When m=32,mean andapproximate solutions00.10.20.30.40.50.60.70.80.91-3.4-3.3-3.2-3.1-3-2.9-2.8-2.7-2.6-2.5App

25、roximation solutionMean solutionFig.5.4When m=64,mean andapproximate solutions6.ConclusionThis paper proposes a numerical method for solving nonlinear SDEs based on BPFs.Byusing the improved operator matrix,simulation results show that the solution of this methodis very close to the exact solution.S

26、ection 4 demonstrates an error analysis and comparesit with 2.The method of approximate solution convergence is faster.Some examples arelisted to verify the feasibility of the current method.References:1 HIGHAM D J.An algorithmic introduction to numerical simulation of stochastic differential equa-t

27、ionsJ.SIAM Rev.,2001,43(3):525-546.2 YUAN C,MAO X.A note on the rate of convergence of the EulerMaruyama method for stochasticdifferential equationsJ.Stoch.Anal.Appl.,2008,26(2):325-333.3 MALEKNEJAD K,KHODABIN M,ROSTAMI M.A numerical method for solving m-dimensionalstochastic It oVolterra integral e

28、quations by stochastic operational matrixJ.Comput.Math.Appl.,2012,63(1):133-143.4 HEYDARI M H,HOOSHMANDASL M R,SHAKIBA A,et al.Legendre wavelets Galerkin methodfor solving nonlinear stochastic integral equationsJ.Nonlinear Dyn.,2016,85(2):1185-1202.5 GUERRA J,NUALART D.Stochastic differential equati

29、ons driven by fractional Brownian motionand standard Brownian motionJ.Stoch.Anal.Appl.,2008,26(5):1053-1075.6 ZHANG X.Stochastic Volterra equations in Banach spaces and stochastic partial differential equa-tionJ.J.Funct.Anal.,2010,258(4):1361-1425.7 WU J H,JIANG G,SANG X Y.Numerical solution of nonl

30、inear stochastic It o-Volterra integralequations based on Haar waveletsJ.Adv.Differ.Equ.,2019(1):1-14.1068MATHEMATICA APPLICATA20238 TAHA M H,RAMADAN M A L,MOATIMID G M.Numerical solution of linear and nonlinearintegral equations via improved block-pulse functionsJ.Am.J.Math.Comput.Model.,2021,6(2):

31、19-34.9 LI R,ZHANG W.Convergence and stability of the two classes of balanced Euler methods for s-tochastic differential equations with locally Lipschitz coefficientsJ.Int.J.Comput.Math.,2022,99(6):1224-1271.10 SHEN G,XIANG J,WU J L.Averaging principle for distribution dependent stochastic different

32、ialequations driven by fractional Brownian motion and standard Brownian motionJ.J.Differ.Equ.,2022,321:381-414.11 AKINBO B J,FANIRAN T,AYOOLA E O.Numerical solution of stochastic differential equationsJ.Int.J.Adv.Res.Sci.,Eng.Tech.,2015,2(5):608-616.12 PEI B,XU Y,WU J L.Stochastic averaging for stoc

33、hastic differential equations driven by fractionalBrownian motion and standard Brownian motionJ.Appl.Math.Lett.,2020,100:106006.13 KLOEDEN P E,PLATEN E.Numerical Solution of Stochastic Differential EquationsM.Berlin,Heidelberg:Springer,1999.14 JIANG Z,SCHAUFELBERGER W.Block Pulse Functions and Their

34、 Applications in Control Sys-temsM.Berlin:Springer-Verlag,1992.15 HEYDARI M H,HOOSHMANDASL M R,CATTANI C,et al.An efficient computational method forsolving nonlinear stochastic It o integral equations:Application for stochastic problems in physicsJ.J.Comput.Phys.,2015,283:148-168.16 SANG X Y,JIANG G

35、,WU J H.Numerical solution of nonlinear stochastic It o-Volterra integralequations by block pulse functionsJ.Math.Appl.,2019,32(4):935-946.17 MALEKNEJAD K,KHODABIN M,ROSTAMI M.Numerical solution of stochastic Volterra integralequations by a stochastic operational matrix based on block pulse functionsJ.Math.Comput.Model.,2012,55(3-4):791-800.利用带有改进算子矩阵的模块脉冲函数求非线性随机微分方程数值解姜国,刘富钢,陈丹(湖北师范大学数学与统计学院,湖北 黄石 435002)摘要:本文介绍基于改进算子矩阵的模块脉冲函数求解非线性随机微分方程的有效数值方法.利用模块脉冲函数的积分算子矩阵将非线性随机积分方程转化为代数方程.此外,我们进行了误差分析,并证明该方法收敛更快.最后,通过数值算例对该方法进行了验证.关键词:随机微分方程;改进算子矩阵;模块脉冲函数

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 学术论文 > 论文指导/设计

移动网页_全站_页脚广告1

关于我们      联系我们       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号  |  icp.png浙ICP备2021020529号-1 浙B2-2024(办理中)  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服