资源描述
山西省2013届高考数学一轮单元复习测试:三角函数
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.
第Ⅰ卷(选择题 共60分)
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知角2α的顶点在原点,始边与x轴的非负半轴重合,终边经过点,且2α∈[0,2π),则tan α等于( )
A.- B. C.- D.
【答案】B
2. 已知, 则( )
A. B. C. D.
【答案】C
3.若,则=( )
A. B. C. D.
【答案】A
4.将函数的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移个单位,所得函数图象的一条对称轴是 ( )
A. B. C. D.
【答案】D
5.函数是( )
A.周期为的奇函数 B.周期为的偶函数
C.周期为的奇函数 D.周期为的偶函数
【答案】A
6.如图,为了研究钟表与三角函数的关系,建立如图所示的坐标系,设秒针尖位置p(x,y).若初始位置为P0(,),当秒针从P0 (注此时t=0)正常开始走时,那么点P的纵坐标y与时间t的函数关系为( )
A.
B.
C.
D.
【答案】C
7.已知函数的一部分如下图所示。如果A>0,,则( )
A.A=4
B.B=4
C.
D.
【答案】D
8. 若将函数的图像上每个点的横坐标缩短为原来的倍(纵坐标不变), 再向右平移个单位后得到的图像关于点对称,则的最小值是( )
A. B. C. D.
【答案】A
9.函数的最小正周期和最大值分别为( )
A. B. C.,1 D.,
【答案】C
10.已知,则( )
A. B. C. D.
【答案】C
11.已知的三个内角满足: ,则的形状为( )
A.正三角形 B.直角三角形
C.等腰直角三角形 D.等腰三角形或直角三角形
【答案】B
12.已知, 则 ( )
A. B. C. D.
【答案】C
第Ⅱ卷(非选择题 共90分)
二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)
13.给出下列六种图象变换方法:
(1)图象上所有点的纵坐标不变,横坐标缩短到原来的;
(2)图象上所有点的纵坐标不变, 横坐标伸长到原来的2倍;
(3)图象向右平移个单位;
(4)图象向左平移个单位;
(5)图象向右平移个单位;
(6)图象向左平移个单位.
请用上述变换中的两种变换,将函数y=sinx的图象变换到函数y=sin(+
)的图象,那么这两种变换正确的标号是______(要求按变换先后顺序填上一种你认为正确的标号即可).
【答案】(4)(2)或(2)(6)
14.已知,且,则的值为 .
【答案】
15.如果,那么= .
【答案】
16.若的面积为,,则边长AB的长度等于 .
【答案】2
三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)
17.在△ABC中,角A,B,C的对边分别为a,b,c,且
(1)求cosB的值;
(2)若,且,求的值.
【答案】(I)由正弦定理得,
因此
(II)由,
所以
18.在中,角所对的边分别为.已知且.
(1)当时,求的值;
(2)若角为锐角,求的取值范围;
【答案】由题设并利用正弦定理,得
解得或
(Ⅱ)解:由余弦定理,
即
因为,得,
由题设知,所以.
19.已知函数f(x)=cos(-)+cos(),k∈Z,x∈R.
(1)求f(x)的最小正周期;
(2)求f(x)在[0,π)上的减区间;
(3)若f(α)= ,α∈(0, ),求tan(2α+ )的值.
【答案】(1)f(x)=cos(-)+cos()
=cos+cos(2kπ+ )
=sin+cos=sin(+),
所以,f(x)的最小正周期T=
(2)由+2kπ≤,k∈Z
得
令k=0,得
令k=-1,得
又x∈[0,π),∴f(x)在[0,π)上的减区间是[,π).
(3)由f(α)= ,得
∴1+sinα,∴sinα=,又α∈(0, ,
∴cosα=
∴
∴
20.已知向量
(I)若且0<<,试求的值;
(II)设试求的对称轴方程和对称中心.
【答案】(I)∵
∴
即
∵∴
∴
∴
(II)
令
∴对称轴方程为
令可得
∴对称中心为
21.在中,角所对的边分别为,且满足,.
(1)求的面积;
(2) 若,求的值.
【答案】(1)因为,所以,
又,所以.
由,得所以
故 .
(2)由,且,解得或
由余弦定理得,
故
22.如图,某园林绿化单位准备在一直角ABC内的空地上植造一块“绿地△ABD”,规划在△ABD的内接正方形BEFG内种花,其余地方种草,若AB=a,,种草的面积为,种花的面积为,比值称为“规划和谐度”。
(I) 试用表示,;
(II) 若为定值,BC >AB。当为何值时,“规划和谐度”有最小值?
最小值是多少?
【答案】(I)
解法一
(II)由(I)
9
用心 爱心 专心
展开阅读全文