收藏 分销(赏)

【2013版中考12年】浙江省绍兴市2002-2013年中考数学试题分类解析-专题09-三角形.doc

上传人:仙人****88 文档编号:6377888 上传时间:2024-12-07 格式:DOC 页数:23 大小:1.47MB 下载积分:10 金币
下载 相关 举报
【2013版中考12年】浙江省绍兴市2002-2013年中考数学试题分类解析-专题09-三角形.doc_第1页
第1页 / 共23页
【2013版中考12年】浙江省绍兴市2002-2013年中考数学试题分类解析-专题09-三角形.doc_第2页
第2页 / 共23页


点击查看更多>>
资源描述
绍兴市2002-2013年中考数学试题分类解析 专题09 三角形、 一、 选择题 1. (2002年浙江绍兴3分)边长为a的正六边形的边心距为【 】 (A)a (B) (C) (D)2a 2. (2003年浙江绍兴4分)已知点G是△ABC的重心,GP∥BC交AB边于点P,BC=,则GP等于【 】   A. B. C. D. 3. (2003年浙江绍兴4分)身高相等的三名同学甲、乙、丙参加风筝比赛,三人放出风筝线长、线与地面交角如过后下表(假设风筝线是拉直的),则三人所放的风筝中【 】 同学 甲 乙 丙 放出风筝线长 100m 100m 90m 线与地面交角 40° 45° 60° A.甲的最高 B.丙的最高 C.乙的最低 D.丙的最低 4. (2008年浙江绍兴4分)兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为【 】 A.11.5米 B.11.75米 C.11.8米 D.12.25米 二、填空题 1. (2003年浙江绍兴5分)若正六边形的边长为2㎝,则此正六边形的外接圆半径为 ▲ ㎝. 【答案】2。 【考点】正多边形和圆,等边三角形的判定。 【分析】正六边形可分成6个全等的等边三角形,等边三角形的边长是正六边形的外接圆半径, 则此正六边形的外接圆半径=正六边形的边长=2㎝。 2. (2003年浙江绍兴5分)若某人沿坡度ⅰ=3:4的斜坡前进10m,则他所在的位置比原来的位置升高 ▲ m. 3. (2004年浙江绍兴5分)在△ABC中,CD⊥AB,请你添加一个条件,写出一个正确结论(不在图中添加辅助线).条件: ▲ ,结论: ▲ . 4. (2004年浙江绍兴5分)如图,河对岸有古塔AB.小敏在C处测得塔顶A的仰角为α,向塔前进s米到达D,在D处测得A的仰角为β则塔高是 ▲ 米. 5. (2005年浙江绍兴5分)(以下两小题选做一题,第(1)小题满分5分,第(2)小题满分为3分。若两小题都做,以第(1)小题计分) 选做第________小题,答案为________ (1)将一副三角板如图叠放,则左右阴影部分面积:之比等于 ▲ (2)将一副三角板如图放置,则上下两块三角板面积:之比等于 ▲ 6. (2006年浙江绍兴5分)已知△ABC∽△A1B1C1,AB:A1B1=2:3,则之比为  ▲  . 【答案】。 【考点】相似三角形的性质。 【分析】∵△ABC∽△A1B1C1,AB:A1B1=2:3, ∴。 三、解答题 1. (2004年浙江绍兴10分) 如图,在平面直角坐标系中,已知△ABC,点P(1,2). (1)作△PQR,使△PQR与△ABC相似(不要求写出作法); (2)在第(1)小题所作的图形中,求△PQR与△ABC的周长比. 2. (2004年浙江绍兴12分)课本第五册第65页有一题: 已知一元二次方程的两个根满足,且a,b,c分别是△ABC的∠A,∠B,∠C的对边.若a=c,求∠B的度数. 小敏解得此题的正确答案“∠B=120°”后,思考以下问题,请你帮助解答.(1)若在原题中,将方程改为,要得到∠B=120°,而条件“a=c”不变,那么应对条件中的的值作怎样的改变?并说明理由. (2)若在原题中,将方程改为(n为正整数,n≥2),要得到∠B=120°,而条件“a=c”不变,那么条件中的的值应改为多少(不必说明理由)? 3. (2006年浙江绍兴10分)某校教学楼后面紧邻着一个土坡,坡上面是一块平地,如图所示,BC∥AD,斜坡AB长22m,坡角∠BAD=680,为了防止山体滑坡,保障安全,学校决定对该土坡进行改造.经地质人员勘测,当坡角不超过500时,可确保山体不滑坡. (1)求改造前坡顶与地面的距离BE的长(精确到0.1m); (2)为确保安全,学校计划改造时保持坡脚A不动,坡顶B沿BC削进到F点处,问BF至少是多少米(精确到0.1m)? (参考数据:sin680=0.9272,cos680=0.3746,tan680=2.4751,sin500=0.766O,cos500=0.6428,tan500=1.1918) 4. (2006年浙江绍兴12分)我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.那么在什么情况下,它们会全等? (1)阅读与证明: 对于这两个三角形均为直角三角形,显然它们全等. 对于这两个三角形均为钝角三角形,可证它们全等(证明略). 对于这两个三角形均为锐角三角形,它们也全等,可证明如下: 已知:△ABC、△A1B1C1均为锐角三角形,AB=A1B1,BC=B1Cl,∠C=∠Cl. 求证:△ABC≌△A1B1C1. (请你将下列证明过程补充完整) 证明:分别过点B,B1作BD⊥CA于D, B1 D1⊥C1 A1于D1. 则∠BDC=∠B1D1C1=900, ∵BC=B1C1,∠C=∠C1, ∴△BCD≌△B1C1D1, ∴BD=B1D1. (2)归纳与叙述:由(1)可得到一个正确结论,请你写出这个结论. △ABC≌△A1B1C1。 (2)根据题意和(1)的证明得出结论。 5. (2007年浙江绍兴12分)课外兴趣小组活动时,许老师出示了如下问题:如图1,已知四边形ABCD中,AC平分∠DAB,∠DAB=60°,∠B与∠D互补,求证:AB+AD=AC.小敏反复探索,不得其解.她想,若将四边形ABCD特殊化,看如何解决该问题. (1)特殊情况入手添加条件:“∠B=∠D”,如图2,可证AB+AD=AC;(请你完成此证明) (2)解决原来问题受到(1)的启发,在原问题中,添加辅助线:如图3,过C点分别作AB、AD的垂线,垂足分别为E、F.(请你补全证明) 6. (2008年浙江绍兴8分)地震发生后,一支专业搜救队驱车前往灾区救援.如图,汽车在一条南北走向的公路上向北行驶,当在A处时,车载GPS(全球卫星定位系统)显示村庄C在北偏西方向,汽车以35km/h的速度前行2h到达B处,GPS显示村庄C在北偏西方向. (1)求B处到村庄C的距离; (2)求村庄C到该公路的距离.(结果精确到0.1km) (参考数据:,,,) ∴村庄C到该公路的距离约为55.2km。 7. (2008年浙江绍兴12分)学完“几何的回顾”一章后,老师布置了一道思考题: 如图,点M,N分别在正三角形ABC的BC,CA边上,且BM=CN,AM,BN交于点Q.求证:∠BQM=60度. (1)请你完成这道思考题; (2)做完(1)后,同学们在老师的启发下进行了反思,提出了许多问题,如: ①若将题中“BM=CN”与“∠BQM=60°”的位置交换,得到的是否仍是真命题? ②若将题中的点M,N分别移动到BC,CA的延长线上,是否仍能得到∠BQM=60°? ③若将题中的条件“点M,N分别在正三角形ABC的BC,CA边上”改为“点M,N分别在正方形ABCD的BC,CD边上”,是否仍能得到∠BQM=60°?… 请你作出判断,在下列横线上填写“是”或“否”:① ;② ;③ .并对②,③的判断,选择一个给出证明. ②的证 8. (2009年浙江绍兴8分)如图,在△ABC中,AB=AC,∠BAC=40°,分别以AB,AC为边作两个等腰直角三角形ABD和ACE,使∠BAD=∠CAE=90°. (1)求∠DBC的度数; (2)求证:BD=CE. 9. (2009年浙江绍兴8分)京杭运河修建过程中,某村考虑到安全性,决定将运河边一河埠头的台阶进行改造.在如图的台阶横断面中,将坡面AB的坡角由45°减至30°.已知原坡面的长为6m(BD所在地面为水平面) (1)改造后的台阶坡面会缩短多少? (2)改造后的台阶高度会降低多少? (精确到0.1m,参考数据:≈1.41, ≈1.73) 10. (2010年浙江绍兴8分)如图,小敏、小亮从A,B两地观测空中C处一个气球,分别测得仰角为30°和60°,A,B两地相距100m.当气球沿与BA平行地飘移10秒后到达C′处时,在A处测得气球的仰角为45°. (1)求气球的高度(结果精确到0.1m); (2)求气球飘移的平均速度(结果保留3个有效数字). 11. (2011年浙江绍兴8分)为倡导“低碳生活”,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图.车架档AC与CD的长分别为45cm,60cm,且它们互相垂直,座杆CE的长为20cm,点A,C,E在同一条直线上,且∠CAB=75°,如图2. (1)求车架档AD的长; (2)求车座点E到车架档AB的距离. (结果精确到 1cm.参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75≈3.7321) 12. (2011年浙江绍兴12分)数学课上,李老师出示了如下框中的题目. 小敏与同桌小聪讨论后,进行了如下解答: (1)特殊情况•探索结论 当点E为AB的中点时,如图1,确定线段AE与的DB大小关系.请你直接写出结论:AE DB(填“>”,“<”或“=”). (2)特例启发,解答題目 解:题目中,AE与DB的大小关系是:AE DB(填“>”,“<”或“=”).理由如下: 如图2,过点E作EF∥BC,交AC于点F,(请你完成以下解答过程) (3)拓展结论,设计新题 在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果). 13. (2012年浙江绍兴8分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M。 (1)若∠ACD=114°,求∠MAB的度数; (2)若CN⊥AM,垂足为N,求证:△ACN≌△MCN。 【考点】平行的性质,角平分线的定义,全等三角形的判定。 【分析】(1)由作法知,AM是∠ACB的平分线,由AB∥CD,根据两直线平行同旁内角互补的性质,得∠CAB=66°,从而求得∠MAB的度数。 14. (2012年浙江绍兴8分)如图1,某超市从一楼到二楼的电梯AB的长为16.50米,坡角∠BAC为32°。 (1)求一楼于二楼之间的高度BC(精确到0.01米); (2)电梯每级的水平级宽均是0.25米,如图2.小明跨上电梯时,该电梯以每秒上升2级的高度运行,10秒后他上升了多少米(精确到0.01米)?备用数据:sin32°=0.5299,con32°=0.8480,tan32°=6249。 15. (2012年浙江绍兴10分)联想三角形外心的概念,我们可引入如下概念。 定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心。 举例:如图1,若PA=PB,则点P为△ABC的准外心。 应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD=AB,求∠APB的度数。 探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长。 16.(2013年浙江绍兴10分)如图,伞不论张开还是收紧,伞柄AP始终平分同一平面内两条伞架所成的角∠BAC,当伞收紧时,结点D与点M重合,且点A、E、D在同一条直线上,已知部分伞架的长度如下:单位:cm 伞架 DE DF AE AF AB AC 长度 36 36 36 36 86 86 (1)求AM的长. (2)当∠BAC=104°时,求AD的长(精确到1cm). 备用数据:sin52°=0.788,cos52°=0.6157,tan52°=1.2799. 17.(2013年浙江绍兴12分)在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上. (1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD. (2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值. 在△ACD与△BEF中,∵,∴△ACD≌△BEF(AAS)。 ∴CD=EF,即EF=CD。 (2)如图2,作EH⊥AD于H,EQ⊥BC于Q, ∵EH⊥AD,EQ⊥BC,AD⊥BC, ∴四边形EQDH是矩形。∴∠QEH=90°。 23
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 小学其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服