收藏 分销(赏)

基于目标航迹的引导误差校正方法研究.pdf

上传人:自信****多点 文档编号:637788 上传时间:2024-01-22 格式:PDF 页数:7 大小:2.27MB
下载 相关 举报
基于目标航迹的引导误差校正方法研究.pdf_第1页
第1页 / 共7页
基于目标航迹的引导误差校正方法研究.pdf_第2页
第2页 / 共7页
亲,该文档总共7页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、文章编号:1002-2082(2023)05-1088-07基于目标航迹的引导误差校正方法研究路大举1,2,张大勇3,曾砾堂4,张凯1,杨浩1,张佩宇4(1.中国工程物理研究院应用电子学研究所,四川绵阳,621900;2.中国工程物理研究院研究生院,四川绵阳,621900;3.中国工程物理研究院流体物理研究所,四川绵阳,621900;4.95972 部队,甘肃酒泉,735300)摘摘 要:要:在探测目标尺寸小且距离远时,由于光电系统的视场角很小,有效的目标前级引导是光电系统跟瞄目标的前提。目标引导的本质是将大地坐标系下的目标点转换至光电系统局部坐标系下,转换过程中引入一系列旋转和平移参数,其准

2、确程度决定了最终的目标引导精度。提出基于无人机航迹的光电系统引导误差校正方法,通过围绕光电系统周围无人机航迹数据,求解引导数据计算过程中坐标变换的最优参数,进而提高目标引导精度。在本项目搭建的实验装置上实现了方位引导标准方差小于 0.052,俯仰引导标准方差小于 0.04,最大误差不超过 0.7。目标前级引导的引导精度越高,光电系统捕获目标速度越快,对于提高目标处置相应速度具有重要意义。关键词:关键词:目标引导;引导误差;目标探测中图分类号:TN953+.5文献标志码:ADOI:10.5768/JAO202344.0503005Guidance error correction method

3、based on target trackLUDaju1,2,ZHANGDayong3,ZENGLitang4,ZHANGKai1,YANGHao1,ZHANGPeiyu4(1.InstituteofAppliedElectronics,ChinaAcademyofEngineeringPhysics,Mianyang621900,China;2.GraduateSchool,ChinaAcademyofEngineeringPhysics,Mianyang621900,China;3.InstituteofFluidPhysics,ChinaAcademyofEngineeringPhysi

4、cs,Mianyang621900,China;4.Unit95972ofPLA,Jiuquan735300,China)Abstract:Whenthesizeofthedetectiontargetissmallandisinthefardistance,duetothesmallfieldofviewofthephotoelectricsystem,theeffectivepre-stagetargetguidanceisthepremiseforthephotoelectricsystemtotrackandpointthetarget.Theessenceoftargetguidan

5、ceisconvertingthetargetpointunderthegeodeticcoordinatesystemintothelocalcoordinatesystemofthephotoelectricsystem.Sinceaseriesofrotationalandtranslationalparameterswillbeintroducedinthisconversionprocess,theaccuracyoftheseparameterswilldeterminetheultimatetargetguidanceaccuracy.Aguidanceerrorcorrecti

6、onmethodwasproposedforthephotoelectricsystem,namelyacquisition-tracking-pointing(ATP)system,basedonunmannedaerialvehicle(UAV)track,which used the track data around ATP system to solve optimal parameters for coordinateconversionintheprocessofcomputingtargetguidancedata,therebytoimprovethetargetguidan

7、ceaccuracy.Experimental device built for this project achieves the following results:the azimuth guidance standardvarianceisbetterthan0.052,theelevationguidancestandardvarianceisbetterthan0.04,andthemaximumerrordoesnotexceed0.7.Theresultsalsoshowthatthehighertheaccuracyofpre-stageguidance,thefastert

8、hetargetacquisitionspeedofATPsystem,whichisofgreatsignificanceforimprovingthecorrespondingspeedofthetargetdisposal.Key words:targetguidance;guidanceerror;targetdetectionIntroductionThe ATP is an important technical means toaccuratelytrackandpointthetarget,butwhenthesizeofthedetectiontargetissmalland

9、isinthefardistance,收稿日期:2022-11-04;修回日期:2023-08-02基金项目:中国工程物理研究院创新基金(C-2021-CX20210023)作者简介:路大举(1981),男,硕士,副研究员,主要从事光学探测和激光测量技术研究。E-mail:通信作者:杨浩(1988),男,硕士,副研究员,主要从事指挥控制和智能化技术研究。E-mail:第44卷第5期应用光学Vol.44No.52023年9月JournalofAppliedOpticsSep.2023the field of view(FOV)of the photoelectric systembecomesv

10、erysmall,whichrequiresaneffectivepre-stageguidancetoallowthetargettofallintotheFOVof ATP,then to achieve capturing,tracking andpointing.Effective pre-stage target guidance is thepremisefortheATPtotrackandpointthetarget1-4.The essence of target guidance is a series of linearcoordinateconversions,that

11、is,thetargetpointunderthegeodeticcoordinatesystemcanbeconvertedintothe local coordinate system of the ATP5-7.Since aseriesofrotationalandtranslationalparameterswillbeintroducedinthisconversionprocess,theaccuracyofthese parameters will determine the ultimate targetguidanceaccuracy.Aguidanceerrorcorre

12、ctionmethodis proposed for the ATP based on unmanned aerialvehicle(UAV)track,whichcoversalltheUAVtrackdatafromdifferentpositionsaroundtheATPtosolveoptimal parameters for coordinate conversion in theprocessofcomputingtargetguidancedata,therebythetargetguidanceaccuracyisimproved.Thesmallertheerror of

13、the pre-stage target guidance,the faster thetarget acquisition speed of ATP,which is of greatsignificanceforimprovingthecorrespondingspeedofthetargetdisposal.1 Principles for target guidance1.1 Target guidance scenarioAsshowninFigure1,thepositionofthetargetisexpressedbythelongitude,latitudeandheight

14、inthegeodeticcoordinates,andthepointingoftheATPisexpressedbytheazimuth,pitchandslantdistanceinitslocalcoordinates.ThepurposeofguidanceistomaketheFOVofATPpointingtothetarget,anditsprocesscan be described as the conversion of the longitude-latitude-height position of target under the geodeticcoordinat

15、esintothelocalcoordinatesoftheATP.ZXYLocal coordinatesof ATPAzimuthpitchslant distanceLongitudeheightTargetEarthlatitudeFig.1 Schematic diagram of target guidance scenario1.2 Target guidance mathematic modelAsshowninFigure2,thecalculationprocessoftarget guidance data is divided into 4 steps duringco

16、ordinateconversion8-10.Targets geodetic position:(Lt,Bt,Ht)WGS84 ellipsoid parameters:radius of long axis rE,flat rate fATP geodetic position:(Lz,Bz,Hz)INS measurement attitude:(,)Installation relationship between theINS and the ATP:(0,0,0)Translation between the positioningantenna and the origin of

17、 the ATPcoordinates:(X0,Y0,Z0)ATPs correction value of pitch zero:E0Targets vector in ECEF:(X1,Y1,Z1)Targets flat earth position:(X2,Y2,Z2)Targets INS position:(X3,Y3,Z3)Targets position in the ATPlocal coordinate system:(At,Et,Ht)Fig.2 Calculation process during coordinate conversionThecalculationp

18、rocessofeachstepisasfollows.1)Convertingthegeodeticpositionofthetargetintotheearth-centeredearth-fixed(ECEF)coordinatesThe calculation process of converting the longi-tude(L),latitude(B),and height(H)into the ECEFcoordinatesisasshowninformula(1):XECEF=(rE1(2f f2)sin2B+H)cosBcosLYECEF=(rE1(2f f2)sin2

19、B+H)cosBcosLZECEF=(rE(1 f)21(2f f2)sin2B+H)sinB(1)rEwhereistheradiusofthelongaxisofearth,fistheflat rate of earth,and the values of which can beobtainedbyqueryingtheWGS84ellipsoidparameters.Thetargetposition(Lt,Bt,Ht)andATPposition(Lz,Bz,Hz)areputintoformula(1),respectively,anditiscalculatedtogainth

20、etargetposition(Xt,Yt,Zt)andATPposition(Xz,Yz,Zz)intheECEFcoordinates,thenthetargetpositionissubtractedfromtheATPpositionto obtain the target vector(X1,Y1,Z1)in the ECEFcoordinates.2)ConvertingthetargetvectorintotheflatearthcoordinatesThe calculation process of converting the targetvector into the f

21、lat earth coordinates is as shown in应用光学2023,44(5)路大举,等:基于目标航迹的引导误差校正方法研究1089formula(2):X2Y2Z2=Tz(2)Ty(2Bz)Tz(Lz)X1Y1Z1(2)where T is the rotational matrix,and the rotationalmatrixaroundthe(X,Y,Z)axisisasfollows:Tx=1000sincos0cossin,Ty=sin0cos010cos0sin,Tz=sincos0cossin00013)Convertingtheflatearthpos

22、itionofthetargetintotheinertialnavigationsystem(INS)coordinatesThecalculationprocessofconvertingtheflatearthposition of the target into the INS coordinates is asshowninformula(3):X3Y3Z3=Ty()Tx()Tz()X2Y2Z2(3)where T is the rotational matrix,and is theazimuth,pitch and roll attitude angles of the INSm

23、easurement,respectively.4)ConvertingtheINSpositionofthetargetintothelocalpolarcoordinatesofATPThe calculation process of converting the INSpositionofthetargetintothelocalpolarcoordinatesofATP is as shown in formula(4)and formula(5),respectively.First,it is converted into the localrectangularcoordina

24、tesofATPbyusingformula(4),thenitisconvertedintothepolarcoordinatesbyusingformula(5):X4Y4Z4=Ty(0)Tx(0)Tz(0)X3Y3Z3X0Y0Z0(4)where(X0,Y0,Z0)isthetranslationbetweentheINSfixandtheoriginoftheATPcoordinates,and(0,0,0)istherotationbetweentheINSandtheATPcoordinates.A=tan1(X4Y4)E=sin1(Z4D)+E0D=X24+Y24+Z24(5)W

25、here(A,E,D)isthelocalpolarcoordinateofthetargetpositionofATP,Aisthetargetazimuth,Eisthetargetpitch,Disthetargetdistance,andE0isthepitchzerocorrectionoftheATP.2 Source of errorFromthemathematicalmodeloftheguidance,wecanseethatthetargetguidanceerrorsourcesarefromthefollowings:thepre-stagetargetdetecti

26、onerror,thepositionerroroftheATP,theattitudeangleerroroftheINS measurement,the calibration error of theinstallation relationship between the INS coordinatesandtheATPcoordinates(i.e.,installationerror),andthepitchcoderzerocalibrationerroroftheATP(i.e.,pitchzeroerror)4.Inaddition,ittakestimefromthetar

27、getdetectiontosendthesolvedguidancedatatotheATP,thustheATPcertainerrorisproducedduetothedelayofthereceivedguidancedata,andthiserroriscalleddelayerror.Intheaboveerrors,thepre-stagetargetdetectionerror,thepositionmeasurementerroroftheATP,andtheattitudepositionerroroftheINSmeasurementaredetermined by t

28、he inherent performance of themeasuring equipment.The delay error is mainlyaffectedbythedelayofthesystemsignaltransmission.For a stable guidance system,the delay is generallymorestable,anditcanbeobtainedbytheATPtimeofreceivingtheguidancedataminusthetimeofthetargetdetectionatthepre-stage,andcompensat

29、edbyderivingtheguidancedata.Theinstallationerrorandpitchzeroerrordependon the calibration method and the measurementaccuracyofthecalibrationdata.Therefore,itismainlyaimedtoimprovetheguidanceaccuracybystudyingtheinstallationrelationshipbetweentheINScoordinates and the ATP coordinates,as well as thepi

30、tchzerocalibrationmethodoftheATP.3 Calibration of guidance parameters3.1 ATPs pitch zero calibration methodAsshowninFigure3,theATPsrotatingZ-axisand X-axis of the rotating plane form a rectangularcoordinatesystem,wherethepitchangleEshouldbezero when the ATPs pointing is parallel with the1090应用光学第44卷

31、第5期rotatingplane.However,whentheATPisinstalled,theactual pointing of its pitch coders zero position Ecannotbecoincided.Therefore,therewillalwaysbeanerrorE0.ZXparallel with the rotating planeATPs pointing when pitch E is zeroE0EEPitch angle E when the ATPs pointing isFig.3 Schematic diagram of pitch

32、zero errorFigure4showstheprincipleoftheATPspitchzerocalibration.First,theATPispointedtothetargetandapitchvalueE1,thentheATPisrotatedby180aroundtheZ-axis,theATPspitchangleisadjustedtillafteroverheadandpointtothetargetagain,andanotherpitchvalueE2isreadatthismoment.Bygeometricrelationships,thecalculati

33、onformula(6)fortheATPspitchzerocorrectionE0canbeestablished:E0=E1+E21802(6)ZXTargetE1E2OE0E0Fig.4 Schematic diagram of pitch zero calibrationThiscalibrationmethodhasahighaccuracyoftheATPspitchzerocorrection,whichcanbeashighasananglerepresentedbyonepixelunitoftheATP.3.2 Calibration of installation re

34、lationship betweenINS and ATPTheATPandthepre-stagedetectionsystemarerequired to simultaneously detect a moving UAVtarget,whilelettheUAVsflighttrackscoverallthedirections of the ATP as much as possible,and thetarget tracks detected by the ATP as well as thatdetectedbythepre-stagedetectionsystemarerec

35、ordedasPA,E,DandS,respectively.Theformula(7)isusedtoobtainthetargetstrackcoordinatePundertheATPslocalcoordinates,andtheconversionofform-ula(1),formula(2)andformula(3)isusedtoobtainthetargetstrackcoordinateSunderthetargetsINScoordinates,whereSisaN3dimensionalmatrix11-15.Pn=DncosEnsinAncosEncosAnsinEn

36、T,n=1,2,N(7)TheconversionbetweenSandPisarotationalandtranslationalrelationship.Let betheconversionalmatrix,thenthemathematicalrelationshipbetweenHandPisasshowninformula(8):P=SI=H(8)N1H=SIN4where I is the unit vector of the dimension,Histhedimensionalmatrix,istheconversionalmatrixof43,andexpressedasf

37、ollows:=a1b1c1a2b2c2a3b3c3A0B0C0(0,0,0)Thefirstthreelinesof arerotationalparameters,the fourth line is a translational parameter.Therotational parameters in can also be expressed byasfollows:a1a2a3b1b2b3c1c2c3=Ty(0)Tx(0)Tz(0)SincethepurposeoftheguidanceistopointtheATPtothetarget,thetargettrackPdetec

38、tedbytheATP in the closed-loop can be used as a referencecriterionfortheguidancedatasolution.Thecalibrationofinstallationrelationshipistheprocessofsolvingtheparameters of conversion from the targets pre-stagedetection track S to the ATPs detection track P.Therefore,the calibration of installation re

39、lationshipcan be converted to a math problem of solving theoptimalconversionalmatrixinformula(8).ThesmallerthedifferenceoftargetpositiondatabetweenthetargetguidancedataandATPdetection,thehigherguidanceaccuracy.Basedonthisprinciple,weuseJ()tomeasuretheguidanceerror,whichcanbeexpressedasformula(9):J()

40、=N1(PnSn1)2=(PH)T(PH)(9)whereJ()isasecondaryfunctionof,andthemath应用光学2023,44(5)路大举,等:基于目标航迹的引导误差校正方法研究1091problemcanbesimplifiedassolvingthe whenJ()isminimum.Expandingformula(9),wehave:J()=(PTP2PTH+THTH)(10)Thederivativeissubstitutedintoformula(10)toobtain:J()=2HTP+2HTH(11)J()bWhenthederivativeiszer

41、o,thevalueofisminimum,sotheoptimal canbesolved.b=(HTH)1HTP(12)bFor the rotational and translational conversionparametersobtainedthroughthismethod,becausethesolution process uses a large number of UAV trackpointscoveringallthedirectionsaroundtheATPtofitthe calculation,the random error of the pre-stag

42、edetectionandtheATPhaslessimpacton.Therefore,the obtained installation relationship parametersbetweentheINSandtheATPhasaconsiderablyhighaccuracy.4 Validation experiment4.1 Experimental designAs shown in Figure 5,the device used for theexperimentwasmainlycomposedof5parts:theATP,theINS,aUAV,aradiostat

43、ion,andacontrolsystem.GPSantennaControl systemRadio stationUAVpositionUAVATPINSFig.5 Schematic diagram of experimental deviceTheATPwasusedtotrackandpointtheflyingUAVandacquiretheUAVsflighttrack.TheINSisused to measure the geodetic coordinates of theexperimentaldeviceandtheATPsazimuth,pitch,androllat

44、tituderelativetothehorizontalcoordinates.Asthetargetfordetection,theUAVfliedaroundtheATP,and at the same time,its own position data wastransmittedtothecontrolsystemviatheradiostationasthepositionforpre-stagedetection.ThemainfunctionofthecontrolsystemwastoguidetheATPtotrackandpoint the UAV,and record

45、 the ATPs tracking andpointingtracks,theUAVstrack,andthepositionandattitudedatameasuredbytheINS.The experimental site was selected at anunobstructed open area.The UAV should change itsheight and distance during flight to avoid its trackbeinginanear-sameplane.4.2 Experimental resultsReferring to the

46、ATPs pitch zero calibrationmethod described in section 3.1,when the ATPpointing at the static target,we read the pitch angleE1=0.9.Then the ATP was horizontally rotated by180,thepitchanglewasadjustedtillafteroverheadandpointedtothesamepointoftargetagain,andthepitchangleE2=180.3wasread.Theformula(6)w

47、asusedtocalculateandobtainthecorrectedvalueofthepitchzeroE0=0.6.DuringthecalibrationexperimentoftheinstallationrelationshipbetweentheINSandtheATP,thefrequenciesoftheacquiredpre-stagedetectiondataofthetargetandtheATPsdetectiondatawereboth20Hz,theflighttimeoftheUAVwasabout23min,and11000setsofvaliddata

48、wereacquiredfromtheflighttrack.Thevaliddatawasdefinedwhenthepre-stagedetectiondataofthetargetwasnormalandtheATP was in a closed-loop state with respect to thetarget.Inthissectionofvaliddata,theUAVsflighttrackwasasshowninFigure6,wherethecirclewasthepositionoftheATP,andthecurvewastheUAVsflighttrack.1

49、6001 4001 2001 00080060040020002002 0001 000 50005001 000 1 500 2 0001 500Y/mX/mFig.6 UAVs flight track around ATPThelongitude,latitude,andheightoftheATPsposition measured by the INS were 104.731 95,1092应用光学第44卷第5期b31.530 62,550.24 m,respectively.The azimuth,pitch,and roll attitudes of the ATP relat

50、ive to thehorizon when measured in static conditions were317.93,0.08,1.12,respectively.Based on theabove data and using the installation relationshipcalibrationmethoddescribedinsection3.2,thedirectrotationalandtranslationalparametermatrixoftheINS and the ATP coordinates was calculated andobtainedasf

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 学术论文 > 论文指导/设计

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服