1、高一数学备课组,等差数列概念,推导等差数列通项公式的方法叫做,法,.,递推,每一项与,它前一项的差,等差数列,如果一个数列从第,2,项起,,等于同一个常数,.,.,.,【,说明,】,数列,a,n,为等差数列,;,a,n,+1,-,a,n,=d,或,a,n,+1,=,a,n,+d,d,=a,n,+1,-,a,n,公差是,的常数;,唯一,a,n,=a,1,+,(,n-,1),d,等差数列各项对应的点都在同一条直线上,.,知识回顾,由定义归纳通项公式,a,2,a,1,=d,,,a,3,a,2,=d,,,a,4,a,3,=d,,,则,a,2,=a,1,+d,a,3,=a,2,+d=a,1,+2d,a,
2、4,=a,3,+d=a,1,+3d,由此得到,a,n,=a,1,+(n,1)d,a,n,1,a,n,2,=d,a,n,a,n,1,=d.,这(,n,1,)个式子迭加,a,n,a,1,=(n,1)d,当,n=1,时,上式两边均等于,a,1,,即等式也成立的。这表明当,nN,*,时上式都成立,因而它就是等差数列,a,n,的通项公式。,等差中项,如果在,a,与,b,中间插入一个数,A,,使,a,,,A,,,b,成等差数列,那么,A,叫做,a,与,b,的,等差中项,。,课本,P35.2.,3,,,4,,,5,,,课堂练习,结论归纳,:,数列,a,n,是公差为,d,的等差数列。,数列,a,1,a,3,a
3、,5,a,7,是公差为,等差数列,数列,a,2,a,4,a,6,a,8,是公差为,等差数列,数列,ma,2,ma,4,ma,6,ma,8,是公差,为,等差数列,例,1,(1),已知数列,a,n,的通项公式是,a,n,=3,n,-1,,,求证:,a,n,为等差数列;,(2),已知数列,a,n,是等差数列,,求证:数列,a,n,+a,n+,1,也是等差数列,.,【,小结,】,数列,a,n,为等差数,;,证明一个数列为等差数列的方法是,:,.,a,n,=,kn+b,k,、,b,是常数,.,证明,:,a,n,+1,a,n,为一个常数,.,例题分析,例,2,(1),等差数列,11,,,8,,,5,,,,
4、的第,19,项是,;,(2),等差数列,-5,,,-9,,,-13,,,的第,项是,-307,;,(3),已知,a,n,为等差数列,若,a,1,=3,,,d,=,,,a,n,=21,,,则,n,=,;,(4),已知,a,n,为等差数列,若,a,17,=,,,d,=,,则,a,10,=,.,-49,99,13,【,说明,】,在等差数列,a,n,的通项公式中,a,1,、,d,、,a,n,、,n,任知,个,可求,.,三,另外一个,上面的命题中的等式两边有,相 同 数 目,的项,如,a,1,+,a,2,=,a,3,成立吗?,【,说明,】,3.,更一般的情形,,a,n,=,,,d,=,等差数列的性质,1
5、,1.,a,n,为等差数列,2.,a,、,b,、,c,成等差数列,a,n,+1,-,a,n,=d,a,n,+1,=a,n,+d,a,n,=,a,1,+,(,n-,1),d,a,n,=,kn +b,(,k,、,b,为常数),a,m,+,(,n,-,m,),d,b,为,a,、,c,的等差中项,AA,2,b=a+c,4.,在等差数列,a,n,中,由,m+n=p+q,a,m,+,a,n,=,a,p,+,a,q,例,3.,在等差数列,a,n,中,(1),已知,a,6,+,a,9,+,a,12,+,a,15,=20,,求,a,1,+,a,20,例题分析,(2,)已知,a,3,+,a,11,=10,,求,a
6、,6,+,a,7,+,a,8,分析:由,a,1,+,a,20,=,a,6,+,a,15,=,a,9,+,a,12,及,a,6,+,a,9,+,a,12,+,a,15,=20,,可得,a,1,+,a,20,=10,分析:,a,3,+,a,11,=,a,6,+,a,8,=2,a,7,,,又已知,a,3,+,a,11,=10,,,a,6,+,a,7,+,a,8,=,(,a,3,+,a,11,),=15,三数成等差数列,它们的和为,12,,首尾二数的,积为,12,,求此三数,.,已知,a,n,为等差数列,且,a,4,+,a,5,+,a,6,+,a,7,=56,,,a,4,a,7,=187,,求公差,d,.,