资源描述
初三生高效复习攻略:中考数学复习重点
主要记忆课本中的公式,定义,要熟练,做到张口就来。
要多做习题,目的是要从习题中掌握学习的技术和巧门,不同的题有不同的方法,用不同的技巧,由其是函数中的动点题是现在出题的热点要多做,但不要做太难的题,以会为主。初中数学的学习重点是函数(包括一次函数,正比例函数,反比例函数,二次函数),重点是意义和性质;三角形(包括基本性质,相似,全等,旋转,平移,对称等);四边形(包括平行四边形,梯形,棱形,长方形,正方形,多边形)的性质,定义,面积。
第二轮数学复习时,更要发挥同学的学习自主性,要根据自己的实际水平,选择适合自己实际情况的复习策略,突击重点难点,起到事半功倍的效果,争取更上一层楼。希望同学能重视模拟考,对自己的模拟考卷做个详尽的分析。同学可以根据模拟考成绩,初步分为三类同学:100分以下、100分到110分之间、110分以上。
100分以下的同学,急需夯实基础,切忌走马观花,好高骛远。由于今年数学中考的题型发生了变化,选择题和填空题的分数共占72分,比例比往年有所提高。如果对数学概念的理解不透彻、做题时考虑不周密,都会轻易失分。这就要求同学们有扎实的数学基础知识、基本能力。中考试题中属于平时学习常见的“双基”类型题约占80%左右,要在这部分试题上保证得分,就必须结合教材,系统复习,对必须掌握的内容要心中有数,胸有成竹。在此我建议各位同学首先一定要配合你的老师进行复习,积极主动,不要另行一套;其次,复习时应配备适量的练习,习题的难度要加以控制,以中、低档为主,另外,对于你觉得较难的题,或者易错的题,应养成做标记的好习惯,做到记忆——消化——再记忆。复习宗旨是在第一阶段复习的基础上延伸和提高,此类同学应侧重提高自己的数学应用能力,真正做到在理解的基础上活学活用。
第二类同学的复习策略我们建议应该是抓两头促中间,针对热点,抓住弱点,开展难点知识专项复习。对各区县的模拟卷不要机械式的一整套一整套地做,而是要有选择的做,建议每天做一小套选择填空题试卷,对错误的情况作好记录,同时控制解题时间,确保“既好又快”。可以根据历年中考试卷命题的特点,精心选择一些新颖的、有代表性的题型进行专题训练,就中考的特点可以从以下几个方面收集一些资料,进行专项训练:①实际应用型问题;②突出科技发展、信息资源的转化的图表信息题;③体现自学能力考查的阅读理解题;④考查应变能力的图形变化题、开放性试题;⑤考查思维能力、创新意识的归纳猜想、操作探究性试题;⑥几何代数综合型试题等。在解综合题时可以先跟着老师走,弄清解题基本策略。至少要做出综合题的第一第二小题。首尾得分提高,中间部分的得分也相应地会有所提高。
对于模拟考130分以上的同学,做题要立足一个“透”字。要以题代知识,每一题不要蜻蜓点水式过一下,要会举一反三,一题多解,一解多题。要掌握的是题目的知识点和几何背景。要留下自我纠错和消化的时间,做好自我整理,并有跟踪练习,确保下次遇到类似题型绝不再错。学数学的目的是为了用数学,近年来各地中考涌现出了大量的形式活跃、趣味有益、启迪智慧的好题目,各位同学应在老师的指导下,对这些热点题型认真复习,专项突破。
对所有试题中较普遍感到困惑的无疑是中考试卷的最后两题:函数中的图形问题、图形中的函数问题。可以说正是这两题最终拉开了试卷的得分。建议大家注重数学思想方法的复习与梳理。数学思想方法是数学的内在形式,是同学们获取数学知识,发展数学能力的动力工具,掌握了数学的思想方法,就会使数学知识更容易理解和记忆。显然,重视数学思想方法,是培养自己分析问题和解决问题的能力的重要措施。由此我们建议,在初三第二轮的复习中能否以思想方法为主线,通过专题讲座的形式,概括数学思想方法,将知识点融会贯通起来。在复习中,从数学思想方法的高度,概括、总结、揭示了一类问题的解题规律,从而提高了解题能力,提高了自身的思维品质,使我们不仅会梳理知识,更会用数学思想方法进行反思,培养能在千变万化的问题情景中,善于握着数学思想方法这把金钥匙,灵活运用知识,发展思维。
总之,“对待未见过的题,需要用数学的思维和创新的方法,一味地靠做题,不认真进行反思,提炼它的数学思想和方法,不一定能解决问题。”因此,在数学综合题复习时我们要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。
2011年中考数学解题技巧与应试策略
【重点解析及解题技巧】三大方法让你茅塞顿开
选择填空题与大题有所不同,只求正确结论,不用遵循步骤,因此应试时可走捷径,运用一些答题技巧,在这一类题中大致总结出三种答题技巧。
1.排除法。是根据题设和有关知识,排除明显不正确选项,那么剩下唯一的选项,自然就是正确的选项,如果不能立即得到正确的选项,至少可以缩小选择范围,提高解题的准确率。排除法是解选择题的间接方法,也是选择题的常用方法。
2.特殊值法。即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。用特殊值法解题要注意所选取的值要符合条件,且易于计算。此类问题通常具有一个共性:题干中给出一些一般性的条件,而要求得出某些特定的结论或数值。在解决时可将问题提供的条件特殊化。使之成为具有一般性的特殊图形或问题,而这些特殊图形或问题的答案往往就是原题的答案。利用特殊值法解答问题,不仅可以选用特别的数值代入原题,使原题得以解决而且可以作出符合条件的特殊图形来进行计算或推理。
3.通过猜想、测量的方法,直接观察或得出结果。这类方法在近年来的中考题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。
【应试策略】准确制胜
1.仔细审题。拿到试卷后,不要急于求成,马上作答,而要通览一下全卷,摸透题情。一是看题量多少,有无印刷问题;二是对通篇试卷的难易做粗略的了解。考试时精力要集中,审题一定要细心。要放慢速度,逐字逐句搞清题意(似曾相识的题目更要注意异同),从多层面挖掘隐含条件及条件间内在联系,为快速解答提供可靠的信息和依据。否则,一味求快、丢三落四,不是思维受阻,就是前功尽弃。
2.按考卷顺序进行作答。中考的考题是由易到难,考试开始,顺利解答几个简单题目,可以使考生信心倍增,有利于顺利进入最佳思维状态。从近年来中考数学卷面来看,考试时间很紧张,考生几乎没有时间检查,这就要求在答卷时认真准确,争取“一遍成”。
3.遇到难题,要敢于暂时“放弃”,不要浪费太多时间(一般来说,选择或填空题每个不超过2分钟),等把会做的题目解答完后,再回头集中精力解决它,可能后面的题能够激发难题的做题灵感。
4.卷面书写既要速度快,又要整洁、准确,这样可以提高答题速度和质量。今年中考采用电脑阅卷,这要求考生填涂答题卡准确,字迹工整,大题步骤明晰。草稿纸书写要有规划,便于回头检查。
5.调整心态。考前怯场或考试中某一环节暂时失利时,不要惊慌,不要灰心丧气,要沉着冷静,进行自我调节。
20110年中考数学提高10分必考知识点
第一章 实数
★重点★ 实数的有关概念及性质,实数的运算
☆内容提要☆
一、 重要概念
1、数的分类及概念
说明:“分类”的原则:1)相称(不重、不漏)
2、非负数:正实数与零的统称。(表为:x≥0)
常见的非负数
性质:若干个非负数的和为0,则每个非负担数均为0。
3、倒数: ①定义及表示法
②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.0<a<1时1/a>1;a>1时,1/a<1;D。积为1。
4。相反数: ①定义及表示法
②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C。和为0,商为-1。
5。数轴:①定义(“三要素”)
②作用:A。直观地比较实数的大小;B。明确体现绝对值意义;C。建立点与实数的一一对应关系。
6。奇数、偶数、质数、合数(正整数—自然数)
定义及表示:
奇数:2n-1
偶数:2n(n为自然数)
7。绝对值:①定义(两种):
代数定义:
几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。
②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、 实数的运算
1. 运算法则(加、减、乘、除、乘方、开方)
2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]
分配律)
3. 运算顺序:A。高级运算到低级运算;B。(同级运算)从“左”
到“右”(如5÷ ×5);C。(有括号时)由“小”到“中”到“大”。
三、 应用举例(略)
附:典型例题
1.已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│=b-a。
2.已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。
第二章 代数式
★重点★代数式的有关概念及性质,代数式的运算
☆内容提要☆
一、 重要概念
分类:
1、代数式与有理式
用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独 的一个数或字母也是代数式。
整式和分式统称为有理式。
2、整式和分式
含有加、减、乘、除、乘方运算的代数式叫做有理式。
没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
有除法运算并且除式中含有字母的有理式叫做分式。
3、单项式与多项式
没有加减运算的整式叫做单项式。(数字与字母的积—包括单独的一个数或字母)
几个单项式的和,叫做多项式。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。
4、系数与指数
区别与联系:①从位置上看;②从表示的意义上看
5、同类项及其合并
条件:①字母相同;②相同字母的指数相同
合并依据:乘法分配律
6、根式
表示方根的代数式叫做根式。
含有关于字母开方运算的代数式叫做无理式。
注意:①从外形上判断;②区别: 、是根式,但不是无理式(是无理数)。
7、算术平方根
⑴正数a的正的平方根( [a≥0—与“平方根”的区别]);
⑵算术平方根与绝对值
① 联系:都是非负数, =│a│
②区别:│a│中,a为一切实数; 中,a为非负数。
8、同类二次根式、最简二次根式、分母有理化
化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。
满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。
把分母中的根号划去叫做分母有理化。
9、指数
⑴ ( —幂,乘方运算)
⑵零指数;负整指数
二、 运算定律、性质、法则
1、分式的加、减、乘、除、乘方、开方法则
2、分式的性质
⑴基本性质
⑵符号法则
⑶繁分式:①定义;②化简方法(两种)
3、整式运算法则(去括号、添括号法则)
4、乘法法则:⑴单×单;⑵单×多;⑶多×多。
5、乘法公式:(正、逆用)
(a+b)(a-b)=
(a±b) =
7、除法法则:⑴单÷单;⑵多÷单。
8、因式分解:⑴定义;⑵方法:A。提公因式法;B。公式法;C。十字相乘法;D。分组分解法;E。求根公式法。
9、根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A. ;B. ;C. 。
10、科学记数法: (1≤a<10,n是整数=
三、 应用举例(略)
四、 数式综合运算(略)
第三章 统计初步
★重点★
☆ 内容提要☆
一、 重要概念
1、总体:考察对象的全体。
2、个体:总体中每一个考察对象。
3、样本:从总体中抽出的一部分个体。
4、样本容量:样本中个体的数目。
5、众数:一组数据中,出现次数最多的数据。
6、中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数)
中考数学做到“五要”取得成绩最大值
中考数学考试中,我们要牢记“五要”以取得中考成绩的最大值。
一要:信心十足迎中考。
中考当天起床后,就要有一个愉快、自信的状态。再检查一下昨晚放入书包的证件、文具,从心理、行动上建立积极迎战的姿态。
铃声响起,微闭双目做几下深呼吸。想想自己的优势,对自己充满自信地说:“又一次显示我能力的机会来了,我是最棒的!”你会觉得头脑清醒,增添了不少信心。
接过考卷,写上姓名后,检查一下有没有漏页、白页,把题目从头到底看一遍。最好先从容易的做起,有利于情绪的稳定。所以有一些同学先做第19题,然后再去做选填题,因为19题相对比较简单,而前面的选填题分值太大,会造成一定的心理压力。
二要:看清题目仔细答。
审题要慢,做题要快。常有学生拿到试卷不细读要求,便动笔答题,造成错误。如在2006年中考的第24题的第二问的最后一句话是这样的:请直接写出点C的坐标和平移后所得图像的函数解析式。有些同学采取浏览的方式,没看清楚直接两个字,结果不厌其烦的书写浪费了大量的时间和精力,影响后面的答题。
三要:控制时间巧答题。
考场答题时由于数学的大题做起来时间较长,大多数同学又不能完全做得出,而中考决定成败的关键是选填题,三道选填题的分数相当于一道大题,所以不要浪费时间去做难题,注意选填题的准确率,答这部分题时争取一次成功。做到最后大题时,更要一步一步去推,能写几步写几步,即使拿不了全分,拿一半分,就很不错了。
如果出现平时会解决的问题、考场上头脑发生“死机”。首先要深信知识一旦进入记忆是不容易丢失的。想想有哪些学过的数学思想方法可以使用,再想想这个问题的突破在哪里,还可以再重新仔细读题,也许你会有新的发现。调节的办法有:1.暂放此题去做别的题;2.干脆搁笔,定定神。往往心理一放松、头脑一清醒,说不定再回过头看这道题时就有了“灵感”。
四要:核对复查勿遗漏。
此道工序不可少,做完后查一查,是否漏做,是否有笔误,是否漏写标题,还有何处可以补救。检查时要一道一道地查,一点也不要遗漏,切忌浮躁。
五要:用笔讲究求准确。
针对今年数学中考首次使用答题纸答题和网上阅卷,我们特别要注意:
1、在答题前,要将自己的姓名、考生登记号和座位号填写清楚,并仔细核准条形码上的姓名、座位号。条形码应粘贴在规定区域,不在规定区域粘贴,本科目成绩将无效。
2、注意选择题部分必须用2B铅笔正确填涂,避免错误的填涂方法,以免扫描不清、扫描不出甚至错误。
3、注意2B铅笔的使用,除选择题和添辅助线之外一律不能使用铅笔作答;非选择题部分必须使用黑墨水钢笔或黑色水笔。避免用蓝色水笔或蓝色圆珠笔,绝对不能用铅笔作答。
4、选择题答案需要更改时,必须用橡皮将原选项擦干净,重新选择。
5、要特别注意字体端正,笔迹清楚。不能使用修正液、修正带。
6、答题时,应注意试题的顺序,试题题号应与答题纸上的题号一一对应,不能错位。
7、答题务必在黑色矩形边框内答题,超出黑色矩形边框内的答题或在草稿纸、试卷上答题将一律无效。
8、要保持答题纸整洁,不折叠,不破损。
因为要将所有的答题纸经过扫描,通过电脑进入阅卷老师的视线,所以书写用笔要挑选好。墨水不能太淡,太淡则阅卷吃力;也不可太浓,太浓弄脏卷面,影响美观。字不可太大,大则乌黑一片;也不可太小,小则局促小气;不可太潦草,草则不清;也不必太正,太正费时。不可涂改,有同学生怕表达不顺或漏说某句,勾来勾去,涂涂改改,又加框又加注,结果一片狼藉,此举为卷面之大忌也。
除选择和填空题目外,其他题目都要有书写格式及步骤,特别是简单的题,步骤就更要写清楚。比如说一道10分的考题分步给分,解题步骤不多,你跳几步就没什么可给分的了
中考数学,锁定“三轮复习”
第一轮巩固基础,第二轮专题训练,第三轮模拟冲刺
新学期中考数学的复习,一般老师会将其划分为三个阶段,也叫“三轮复习”。各阶段复习目的不同,复习角度和方法也不相同。三轮复习决不会机械重复,而是一个螺旋上升的过程。所以提醒广大学生,无论哪个复习阶段,都不可以有放松的思想。
三个阶段三次提高
第一轮复习称为同步复习阶段,主要是夯实基础,完善知识框架。
在这一复习阶段,一般采取“切大块”的方法,也就是把初中阶段的所有内容进行重新整理,把它理成几大块,比如:数与式、方程与不等式、函数及其图像、相交线和平行线、三角形与四边形、解直角三角形,以每一部分为一大单元,进行复习梳理。这时,应重视“双基”,抓好了第一轮复习,对尖子生的冲刺、中等生的跨档、后进生的提高,都有好处。
第二轮复习主要是综合提高,强化冲刺,又称为专题复习。在专题复习阶段,主要进行专题训练,主要训练综合运用知识解决问题能力,这个阶段的复习要求比第一阶段高,接触的主要是一些综合题。
第三轮复习是模拟、冲刺阶段,主要是模拟考试,查漏补缺,增加学生实战经验。在模拟、冲刺阶段,主要是模拟、查漏补缺,这时还应反扣教材,同时做好心理调适工作。
把握中考命题方向
这几年,数学中考命题在依据《数学课程标准》的基础上,重视对基础知识、基本技能的考查,并体现开放、探索、应用、创新的风格。命题内容注重根植现行教材,突出考查双基,要求考生在理解并掌握教材内容的基础上运用它来解决相关问题。
这几年对方程、函数、三角形与四边形、圆等重点知识的考查都保持了较高的比例,在重点考查学生最基本、最通用的数学规律和数学技能的同时,突出对数学思想方法的考查是近年来数学中考命题改革的又一发展趋势,试卷几乎涵盖了函数与方程思想、数形结合思想、分类讨论思想、转化思想,整体思想、统计思想等等,还加大了如统计、概率、视图、图形变换等新增内容的考查。
近几年的应用题背景新颖,贴近生活,它摒弃了繁琐的计算,需要学生能将实际问题抽象出来,构建数学模型并用已有的数学知识和数学方法解决。市场经济、人文社会、环境保护、依法纳税、方案设计、操作决策等都可能是命题的素材。
好参考书不妨做两遍
经常会有一些学生说,我做了很多题目,可我的成绩为什么上不去?要提高数学成绩,适当地做一定量的练习是必要的,但盲目地把自己埋在题海里,并不一定能取得好的效果,尤其是在中考复习阶段,一定要避免题海战术。
中考复习,你可以选择一本知识点全面、题目新颖的参考书。做参考书应该是一个由薄到厚,再由厚到薄的过程。参考书不在多,而在于真正把它用好,而要真正用好一本参考书,至少可以用两遍以上。
学生还应有意识地培养分析问题、解决问题的能力,学会寻找问题的切入口。每年中考,都会出现一些你平常没见过的创新题,许多同学一碰到新题,心里就会发慌。在平时的学习过程中,每个同学差不多都有过这样的经历:一道题,自己总也想不出解法,而老师或其他同学却给出了一个绝妙的解法,这时你最希望知道的是“别人是怎么想出这个解法的?为什么我没有想到?”在中考复习阶段,学生应学会在平时做题过程中有意识地培养自己分析问题、解决问题的能力,学会寻找解决问题的切入口。
初中数学里常用的几种经典解题方法
1、配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理
一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。
6、构造法
在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
7、反证法
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
8、面积法
平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。
用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。
9、几何变换法
在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。
几何变换包括:(1)平移;(2)旋转;(3)对称。
10.客观性题的解题方法
选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。
填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。
要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。下面通过实例介绍常用方法。
(1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。
(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。
(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。
(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。
(5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。
(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,称为分析法.
中考数学复习“六原则”
一、主体性原则
学生是教学活动中的主体对象,在复习教学中,应将学生摆在核心的地位,要充分调动学生的学习积极性和主动性,学生的主体地位应该贯穿于复习教学的始终。
二、方向性原则
要提高复习的质量,方向很重要。要认真研究《中考考试说明》,它可以使我们纵观复习教学全局,抓住重点,抓住关键,增强数学复习教学针对性和科学性,减少复习教学的随意性和盲目性,少走弯路,少做无用功。
三、针对性原则
“针对”可以瞄准目标,有的放矢,提高命中率。
1.复习教学一定要针对平时教学中学生易错、易混淆的知识进行讲解和练习,绝不能不分主次,眉毛胡子一把抓,应做到有的放矢。
2.针对近几年中考的热点、重点、难点进行专题训练,针对近几年中考的重要题型进行强化训练,如推断题、信息阅读题、实验题、开放性试题等。
四、变式性原则
“变”可以使人产生新奇,“变”可以提高人的识别能力。不就题论题,要适当扩散,善于借题发挥,将原题改头换面,从不同角度和侧面来引导学生分析,善于从一道题中引伸出其它的知识点,引导学生去联想,达到触类旁通的效果。
五、层次性原则
1.数学复习教学要根据学生已有的知识水平和接受能力分层要求,课堂教学推行分层教学。
2.数学复习教学还要做到阶段的层次性:
第一轮复习以课本的章节顺序进行。第二轮是分专题分块进行系统的复习。在复习时想方设法指导学生把零、散、乱的知识纳入自己的知识结构,注意知识点的横向和纵向的交织和搭桥,做到帮助和指导学生构筑知识框架、编织知识网络。第三轮复习主要是综合训练和模拟测试。通过训练进一步扩展学生的思维空间和提高学生解题能力,帮助学生查漏补缺。加强对学生考试心理和考试方法的指导,提高学生的应试能力。
六、联前带后的原则
在复习教学中要注意相关的知识的渗透和牵线搭桥,尽量使前后知识发生联系。在第一轮和第二轮复习时建议学生每周完成一份综合练习,以提高知识的复现率。
“七重视”提升数学学习能力
我们要锻炼学数学的能力,要改变单纯接受的学习方式,学会采用接受学习与探究学习、合作学习、体验学习等多样化的方式进行学习,要在教师的指导下逐步学会“提出问题—实验探究—开展讨论—形成新知—应用反思”的学习方法。在初三数学学习中尤其要做到七个重视:
-重视构建知识网络——宏观把握数学框架
要学会构建知识网络,数学概念是构建知识网络的出发点,也是数学中考考查的重点。因此,我们要掌握好代数中的数、式、不等式、方程、函数、三角比、统计和几何中的平行线、三角形、四边形、圆的概念、分类、定义、性质和判定,并会应用这些概念去解决一些问题。
-重视夯实数学双基——微观掌握知识技能
在复习过程中夯实数学基础,要注意知识的不断深化,注意知识之间的内在联系和关系,将新知识及时纳入已有知识体系,逐步形成和扩充知识结构系统,这样在解题时,就能由题目所提供的信息,从记忆系统中检索出有关信息,选出最佳组合信息,寻找解题途径、优化解题过程。
-重视强化题组训练——感悟数学思想方法除了做基础训练题、平面几何每日一题外,还可以做一些综合题,并且养成解题后反思的习惯。反思自己的思维过程,反思知识点和解题技巧,反思多种解法的优劣,反思各种方法的纵横联系。而总结出它所用到的数学思想方法,并把思想方法相近的题目编成一组,不断提炼、不断深化,做到举一反三、触类旁通。逐步学会观察、试验、分析、猜想、归纳、类比、联想等思想方法,主动地发现问题和提出问题。
-重视建立“病例档案”——做到万无一失准备一本数学学习“病例卡”,把平时犯的错误记下来,找出“病因”开出“处方”,并且经常地拿出来看看、想想错在哪里,为什么会错,怎么改正,这样到中考时你的数学就没有什么“病例”了。我们要在教师的指导下做一定数量的数学习题,积累解题经验、总结解题思路、形成解题思想、催生解题灵感、掌握学习方法。
-重视常用公式技巧——做到思维敏捷准确对经常使用的数学公式要理解来龙去脉,要进一步了解其推理过程,并对推导过程中产生的一些可能变化自行探究。对今后继续学习所必须的知识和技能,对生活实际经常用到的常识,也要进行必要的训练。例如:1-20的平方数;简单的勾股数;正三角形的面积公式以及高和边长的关系;30°、45°直角三角形三边的关系……这样做,一定能更好地掌握公式并胜过做大量习题,而且往往会有意想不到的效果。
-重视中考动向要求——勤练解题规范速度
要把握好目前的中考动向,特别是近年来上海的中考越来越注重解题过程的规范和解答过程的完整。在此特别指出的是,有很多学生认为只要解出题目的答案就万事大吉了,其实只要是有过程的解答题,过程分比最后的答案要重要得多,不要会做而不得分。
-重视掌握应试规律——提高考试成绩效率有关专家曾对高考落榜生和高考佼佼者特别是一些地区的高考“状元”进行过研究和调查,结果发现,他们的最大区别不是智力,而是应试中的心理状态。也有人曾对影响考试成功的因素进行过调查,结果发现,排在第一位的是应试中的心态,第二位的是考前状况,第三位的是学习方法,我们最重视的记忆力却排在第17位。事实上,侧重对考生素质和能力的考核已经是各类考试改革的大趋势,应试中的心态对应试的成功将日趋重要。具有良好心理状态的考生,可以较好地预防考试焦虑,较好地运筹时间,减少应试中的心理损伤
过来人谈中考复习:数学巧用两段法
韩天璞把中考数学复习大致分为两个阶段。第一个阶段,是第一轮复习。应尽可能全面细致地回顾以往学过的知识。概念和定理的复习建议跟着老师的安排复习进行,同时一定要注意配合复习进度适当做一些练习。这时候做练习题不要求做得太多、太杂,更不能满足于做对即可,关键是要在练习中领悟和掌握各种题型的解题方法和技巧。可以参考老师帮助总结的各种类型题,再结合自己的实际情况消化理解,力图把每一个题型都做熟做透。对于想冲击高分的同学,可以在难题上下工夫,尤其是往年考过的压轴题,一定要仔细弄明白。
第二个阶段,是在三次模拟考试期间。在此期间,要重点训练自己答题的速度和准确率,不要再去死抠特别难的题了。每天至少要做一套模拟试题,逐步适应中考状态,不要让手“生”了。要重视三次模拟考试,就把它当作中考去对待,努力适应大考的环境。
在中考前的几天,再做一两套模拟题,把平时易错的题看一遍,让心里充满自信,之后就不要再看了,养足了精神,准备考试。
最后韩天璞再向大家介绍一些考场技巧:要保持适度的紧张,先把选择题拿下来,让心里有个底,接下来按部就班地做。切记,不要挑着题做,遇到难题不要慌,想想平时学过的知识,一点一点做下去,实在做不出来也不要灰心,跳过去,千万不要因小失大,影响了大局。做到最后大题时,更要一步一步去推,能写几步写几步,即使拿不了全分,拿一半分,就很不错了。最后,做完了一定要检查,检查时要一道一道地查,一点也不要遗漏,切忌浮躁。
中考最后冲刺名师点拨数学易错点
求利润是近年来的热点,应引起注意
例1、某商场购进一种单价为40元的篮球,如果以单价50元出售,那么每月可售出500个,根据销售经验,售价每提高1元,销售量相应减少10个;
(1)假设销售单价提高x元,那么销售每个篮球所获得的利润是 元;这种篮球每月的销售量是 个(用含x的代数式表示);
(2)8000元是否为每月销售这种篮球的最大利润?如果是,请说明理由;如果不是,请求出最大利润,此时篮球的售价应定为多少元?
解:(1)10+x,500-10x
(2)设月销售利润为y元
由题意得:y=(10+x)(500-10x)
整理得:y=-10(x-20)2+9000
当x=20时,y有最大值9000
20+50=70
答:8000元不是最大利润,最大利润是9000元,此时篮球售价为70元。
展开阅读全文