资源描述
衡南三中高中数学衔接课
第一讲 数与式
1.1 数与式的运算
1. 1.1.绝对值
绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,
零的绝对值仍是零.即
绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离.
两个数的差的绝对值的几何意义:表示在数轴上,数和数之间的距离.
练 习
1.填空:
(1)若,则x=_________;若,则x=_________.
(2)如果,且,则b=________;若,则c=________.
2.选择题:
下列叙述正确的是 ( )
(A)若,则 (B)若,则
(C)若,则 (D)若,则
3. 化简:|x-5|-|2x-13| (x>5).
1.1.2. 乘法公式
我们在初中已经学习过了下列一些乘法公式:
(1)平方差公式 ;
(2)完全平方公式 .
我们还可以通过证明得到下列一些乘法公式:
(1)立方和公式 ;
(2)立方差公式 ;
(3)三数和平方公式 ;
(4)两数和立方公式 ;
(5)两数差立方公式 .
对上面列出的五个公式,有兴趣的同学可以自己去证明.
例1 计算:.
例2 已知,,求的值.
练 习
1.填空:
(1)( );
(2) ;
(3 ) .
2.选择题:
(1)若是一个完全平方式,则等于 ( )
(A) (B) (C) (D)
(2)不论,为何实数,的值 ( )
(A)总是正数 (B)总是负数
(C)可以是零 (D)可以是正数也可以是负数
1.1.3.二次根式
一般地,形如的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式. 例如 ,等是无理式,而,,等是有理式.
1.分母(子)有理化
把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,例如与,与,与,与,等等. 一般地,与,与,与互为有理化因式.
分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程
在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.
2.二次根式的意义
例1将下列式子化为最简二次根式:
(1) ; (2); (3).
例2计算:.
例3 试比较下列各组数的大小:
(1)和; (2)和.
例4 化简:.
例 5 化简:(1); (2)
例 6 已知,求的值 .
练习
1.填空:
(1)=__ ___;
(2)若,则的取值范围是_ _ ___;
(3)__ ___;
(4)若,则______ __.
2.选择题:
等式成立的条件是 ( )
(A) (B) (C) (D)
3. 若,求的值.
4.比较大小:2- -(填“>”,或“<”).
1.1.4.分式
1.分式的意义
形如的式子,若B中含有字母,且,则称为分式.当M≠0时,分式具有下列性质:;.
上述性质被称为分式的基本性质.
2.繁分式
像,这样,分子或分母中又含有分式的分式叫做繁分式.
例1 若,求常数的值.
例2 (1)试证:(其中n是正整数);
(2)计算:;
(3)证明:对任意大于1的正整数n, 有.
例3 设,且e>1,2c2-5ac+2a2=0,求e的值.
练习
1.填空题:
对任意的正整数n, ();
2.选择题:
若,则= ( )
(A)1 (B) (C) (D)
3.正数满足,求的值.
4.计算.
习题1.1
1.解不等式:
(1) ; (2) ;
(3) .
2.已知,求的值.
3.填空:
(1)=________;
(2)若,则的取值范围是________;
(3)________.
1.2 分解因式
因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.
1.十字相乘法
例1分解因式:
(1)x2-3x+2; (2)x2+4x-12;
(3); (4).
解:(1)如图1.2-1,将二次项x2分解成图中的两个x的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x,就是x2-3x+2中的一次项,所以,有
-1
-2
x
x
图1.2-1
-1
-2
1
1
图1.2-2
-2
6
1
1
图1.2-3
-ay
-by
x
x
图1.2-4
x2-3x+2=(x-1)(x-2).
说明:今后在分解与本例类似的二次三项式时,可以直接将图1.2-1中的
两个x用1来表示(如图1.2-2所示).
(2)由图1.2-3,得
x2+4x-12=(x-2)(x+6).
(3)由图1.2-4,得
=
-1
1
x
y
图1.2-5
(4)=xy+(x-y)-1
=(x-1) (y+1) (如图1.2-5所示).
2.提取公因式法与分组分解法
例2 分解因式:
(1) ; (2).
3.关于x的二次三项式ax2+bx+c(a≠0)的因式分解.
若关于x的方程的两个实数根是、,则二次三项式就可分解为.
例3 把下列关于x的二次多项式分解因式:
(1) ; (2).
练 习
1.选择题:
多项式的一个因式为 ( )
(A) (B) (C) (D)
2.分解因式:
(1)x2+6x+8; (2)8a3-b3;
(3)x2-2x-1; (4).
习题1.2
1.分解因式:
(1) ; (2);
(3); (4).
2.在实数范围内因式分解:
(1) ; (2);
(3); (4).
3.三边,,满足,试判定的形状.
4.分解因式:x2+x-(a2-a).
7
展开阅读全文