资源描述
华师《概率统计A》在线作业
试卷总分:100 测试时间:--
一、单选题(共 25 道试题,共 50 分。)
V
1. 设随机变量X和Y相互独立,X的概率分布为X=0时,P=1/3;X=1时,P=2/3。Y的概率分布为Y=0时,P=1/3;Y=1时,P=2/3。则下列式子正确的是( )
A. X=Y
B. P{X=Y}=1
C. P{X=Y}=5/9
D. P{X=Y}=0
满分:2 分
2. 一口袋装有6只球,其中4只白球、2只红球。从袋中取球两次,每次随机地取一只。采用不放回抽样的方式,取到的两只球中至少有一只是白球的概率( )
A. 4/9
B. 1/15
C. 14/15
D. 5/9
满分:2 分
3. 环境保护条例规定,在排放的工业废水中,某有害物质含量不得超过0.5‰ 现取5份水样,测定该有害物质含量,得如下数据:0.53‰,0。542‰, 0.510‰ , 0.495‰ , 0.515‰则抽样检验结果( )认为说明含量超过了规定
A. 能
B. 不能
C. 不一定
D. 以上都不对
满分:2 分
4. 射手每次射击的命中率为为0.02,独立射击了400次,设随机变量X为命中的次数,则X的方差为( )
A. 6
B. 8
C. 10
D. 20
满分:2 分
5. 设随机变量的数学期望E(ξ)=μ,均方差为σ,则由切比雪夫不等式,有{P(|ξ-μ|≥3σ)}≤( )
A. 1/9
B. 1/8
C. 8/9
D. 7/8
满分:2 分
6. 现有一批种子,其中良种占1/6,今任取6000粒种子,则以0.99的概率推断,在这6000粒种子中良种所占的比例与1/6的差是( )
A. 0.0124
B. 0.0458
C. 0.0769
D. 0.0971
满分:2 分
7. 设X,Y为两个随机变量,已知cov(X,Y)=0,则必有()。
A. X与Y相互独立
B. D(XY)=DX*DY
C. E(XY)=EX*EY
D. 以上都不对
满分:2 分
8. 设随机变量X服从正态分布,其数学期望为10,均方差为5,则以数学期望为对称中心的区间( ),使得变量X在该区间内概率为0.9973
A. (-5,25)
B. (-10,35)
C. (-1,10)
D. (-2,15)
满分:2 分
9. 任何一个随机变量X,如果期望存在,则它与任一个常数C的和的期望为( )
A. EX
B. EX+C
C. EX-C
D. 以上都不对
满分:2 分
10. 投掷n枚骰子,则出现的点数之和的数学期望是
A. 5n/2
B. 3n/2
C. 2n
D. 7n/2
满分:2 分
11. 设随机变量X和Y独立,如果D(X)=4,D(Y)=5,则离散型随机变量Z=2X+3Y的方差是( )
A. 61
B. 43
C. 33
D. 51
满分:2 分
12. 已知随机变量X服从二项分布,且E(X)=2.4,D(X)=1.44,则二项分布的参数n,p的值为( )
A. 4,0.6
B. 6,0.4
C. 8,0.3
D. 24,0.1
满分:2 分
13. 设服从正态分布的随机变量X的数学期望和均方差分别为10和2,则变量X落在区间(12,14)的概率为( )
A. 0.1359
B. 0.2147
C. 0.3481
D. 0.2647
满分:2 分
14. 当总体有两个位置参数时,矩估计需使用()
A. 一阶矩
B. 二阶矩
C. 一阶矩或二阶矩
D. 一阶矩和二阶矩
满分:2 分
15. 设随机变量X服从正态分布,其数学期望为10,X在区间(10,20)发生的概率等于0.3。则X在区间(0,10)的概率为( )
A. 0.3
B. 0.4
C. 0.5
D. 0.6
满分:2 分
16. 甲乙两人投篮,命中率分别为0.7,0.6,每人投三次,则甲比乙进球数多的概率是
A. 0.569
B. 0.856
C. 0.436
D. 0.683
满分:2 分
17. 进行n重伯努利试验,X为n次试验中成功的次数,若已知EX=12.8,DX=2.56 则n=( )
A. 6
B. 8
C. 16
D. 24
满分:2 分
18. 下列数组中,不能作为随机变量分布列的是( ).
A. 1/3,1/3,1/6,1/6
B. 1/10,2/10,3/10,4/10
C. 1/2,1/4,1/8,1/8
D. 1/3,1/6,1/9,1/12
满分:2 分
9. 设g(x)与h(x)分别为随机变量X与Y的分布函数,为了使F(x)=ag(x)+bh(x)是某一随机变量的分布函数,在下列各组值中应取( )
A. a=3/5 b=-2/5
B. a=-1/2 b=3/2
C. a=2/3 b=2/3
D. a=1/2 b=-2/3
满分:2 分
20. 在参数估计的方法中,矩法估计属于( )方法
A. 点估计
B. 非参数性
C. A、B极大似然估计
D. 以上都不对
满分:2 分
21. 200个新生儿中,男孩数在80到120之间的概率为( ),假定生男生女的机会相同
A. 0.9954
B. 0.7415
C. 0.6847
D. 0.4587
满分:2 分
22. 设X,Y为两个随机变量,则下列等式中正确的是
A. E(X+Y)=E(X)+E(Y)
B. D(X+Y)=D(X)+D(Y)
C. E(XY)=E(X)E(Y)
D. D(XY)=D(X)D(Y)
满分:2 分
23. 设随机变量X和Y独立同分布,记U=X-Y,V=X+Y,则随机变量U与V必然( )
A. 不独立
B. 独立
C. 相关系数不为零
D. 相关系数为零
满分:2 分
24. 已知随机变量X~N(-3,1),Y~N(2,1),且X与Y相互独立,Z=X-2Y+7,则Z~
A. N(0,5)
B. N(1,5)
C. N(0,4)
D. N(1,4)
满分:2 分
25. 设X与Y是相互独立的两个随机变量,X的分布律为:X=0时,P=0.4;X=1时,P=0.6。Y的分布律为:Y=0时,P=0.4,Y=1时,P=0.6。则必有( )
A. X=Y
B. P{X=Y}=0.52
C. P{X=Y}=1
D. P{X#Y}=0
满分:2 分
二、判断题(共 25 道试题,共 50 分。)
V
1. 随机变量的方差不具有线性性质,即Var(aX+b)=a*a*Var(X)
A. 错误
B. 正确
满分:2 分
2. 若随机变量X服从正态分布N(a,b),随机变量Y服从正态分布N(c,d),则X+Y所服从的分布为正态分布。
A. 错误
B. 正确
满分:2 分
3. 有一均匀正八面体,其第1,2,3,4面染上红色,第1,2,3,5面染上白色,第1,6,7,8面染上黑色。现抛掷一次正八面体,以A,B,C分别表示出现红,白,黑的事件,则A,B,C是两两独立的。
A. 错误
B. 正确
满分:2 分
4. 若随机变量X服从正态分布N(a,b),则c*X+d也服从正态分布
A. 错误
B. 正确
满分:2 分
5. 样本平均数是总体的期望的无偏估计。
A. 错误
B. 正确
满分:2 分
6. 如果随机变量A和B满足D(A+B)=D(A-B),则必有A和B相关系数为0
A. 错误
B. 正确
满分:2 分
7. 袋中有白球b只,黑球a只,以放回的方式第k次摸到黑球的概率与第一次摸到黑球的概率不相同
A. 错误
B. 正确
满分:2 分
8. 服从二项分布的随机变量可以写成若干个服从0-1分布的随机变量的和。
A. 错误
B. 正确
满分:2 分
9. 对于两个随机变量的联合分布,如果他们是相互独立的则他们的相关系数可能不为0。
A. 错误
B. 正确
满分:2 分
10. 置信度的意义是指参数估计不准确的概率。
A. 错误
B. 正确
满分:2 分
11. 随机变量的期望具有线性性质,即E(aX+b)=aE(X)+b
A. 错误
B. 正确
满分:2 分
12. 若两个随机变量的联合分布是二元正态分布,如果他们是相互独立的则他们的相关系数为0。
A. 错误
B. 正确
满分:2 分
13. 样本均值是泊松分布参数的最大似然估计。
A. 错误
B. 正确
满分:2 分
14. 若两个随机变量的联合分布是二元正态分布,如果他们的相关系数为0则他们是相互独立的。
A. 错误
B. 正确
满分:2 分
15. 两个正态分布的线性组合可能不是正态分布
A. 错误
B. 正确
满分:2 分
16. 若A与B相互独立,那么B补集与A补集不一定也相互独立
A. 错误
B. 正确
满分:2 分
17. 对于两个随机变量的联合分布,两个随机变量的相关系数为0则他们可能是相互独立的。
A. 错误
B. 正确
满分:2 分
18. 在掷硬币的试验中每次正反面出现的概率是相同的,这个概率在每次实验中都得到体现
A. 错误
B. 正确
满分:2 分
19. 二元正态分布的边缘概率密度是一元正态分布。
A. 错误
B. 正确
满分:2 分
20. 样本平均数是总体期望值的有效估计量。
A. 错误
B. 正确
满分:2 分
21. 若 A与B 互不相容,那么 A与B 也相互独立
A. 错误
B. 正确
满分:2 分
22. 事件A与事件B互不相容,是指A与B不能同时发生,但A与B可以同时不发生
A. 错误
B. 正确
满分:2 分
23. 在掷硬币的试验中每次正反面出现的概率是相同的,如果第一次出现是反面那么下次一定是正面
A. 错误
B. 正确
满分:2 分
24. 如果相互独立的r,s服从N(u,d)和N(v,t)正态分布,那么E(2r+3s)=2u+3v
A. 错误
B. 正确
满分:2 分
25. 在某一次随机试验中,如掷硬币试验,概率空间的选择是唯一的
A. 错误
B. 正确
满分:2 分
展开阅读全文