1、目 录第一章 绪论1第二章 植物的营养元素6第三章 植物对营养物质的吸收9第四章 养分在植物体内的运输和分配25第五章 植物的碳、氢、氧营养33第六章 植物的氮素营养与氮肥35第七章 植物的磷素营养与磷肥53第八章 植物的钾素营养与钾肥68第九章 植物的钙、镁、硫、硅营养与钙、镁、硫、硅肥79第十章 植物的微量元素营养与微量元素肥料82第十一章 复混肥料88第十二章 有机肥料和生物肥料96第十三章 植物营养性状的遗传改良 (讲座一,略)102第十四章 植物对逆境土壤的适应性 (讲座二,略)102植物营养学课程总结103参 考 资 料参 考 书:1. 植物营养学(上、下册)(陆景陵、胡蔼堂主编,
2、2003)2. 植物营养与肥料(浙江农业大学主编,2001)3. 农业化学(总论)(北京农业大学主编,1994)4. 高级植物营养学(廖红、严小龙编著,2003)5. Principles of Plant Nutrition (Third Edition) (K. Mengel, E. A. Kirkby. 1982)6. Mineral Nutrition of Higher Plants (Second Edition) (H. Marschner. 1995)7. Mineral Nutrition of Plants: Principles and Perspectives (Sec
3、ond Edition) (E. Epstein, A. J. Bloom. 2005)参考期刊:1. 植物营养与肥料2. 土壤与肥料3. 磷肥与复肥4. Journal of Plant Nutrition5. Plant and Soil6. Fertilizer Research 第一章 绪论主要内容 基本要求植物营养学的基本概念掌握植物营养学的发展概况 掌握李比希的三个学说植物营养学的范畴及研究方法 了解第一节 植物营养学的基本概念一、植物营养学 (plant nutrition)1. 含义:植物营养学是研究营养物质对植物的营养作用,研究植物对营养物质的吸收、运输、转化和利用的规律,以
4、及植物与外界环境之间营养物质和能量交换的科学。营养作用 营养物质和营养物质 植物 环境吸收、运输、转化、利用 能量交换2. 植物营养学与农业生产 理论指导合理施肥良好的营养环境 高产优质3. 主要任务:阐明植物体与外界环境之间营养物质交换和能量交换的具体过程,以及体内营养物质运输、分配和能量转化的规律,并在此基础上通过施肥手段为植物提供充足的养分,创造良好的营养环境,或通过改良植物遗传特性的手段调节植物体的代谢,提高植物营养效率,从而达到明显提高作物产量和改善产品品质的目的。简单来说,就是以植物营养原理为理论基础,以施肥或改良植物营养遗传特性为手段,达到高产、优质和高效的目的。二、肥料 (fe
5、rtilizer)1. 含义:直接或间接供给植物所需养分,改善土壤性状,以提高作物产量和改善产品品质的物质。2. 肥料在农业生产中的作用(1)提高农作物产量;(2)改善农产品品质:氮提高谷类籽粒蛋白质和“必需氨基酸”的含量磷改善糖料作物、淀粉作物、油料作物等的品质钾对作物产量和品质的影响:钾充足,不但能使作物产量增加,而且可以改善作物品质,如: 油料作物的含油量增加; 纤维作物的纤维长度和强度改善; 淀粉作物的淀粉含量增加; 糖料作物的含糖量增加; 果树的含糖量、维C和糖酸比提高,果实风味增加; 橡胶单株干胶产量增加,乳胶早凝率降低;钾通常被称为“ 品质元素”(3)改良土壤,提高土壤肥力(包括
6、土壤结构、土壤养分含量和比例、土壤反应、土壤生化特性等)3. 肥料的来源、分类和种类来源:人类生存环境中的资源;生活和生产的废弃物。分类和种类:按组分分: 有机肥和无机肥(矿质肥)按来源分: 农家肥和商品肥按主要作用分:直接肥和间接肥按肥效快慢分:速效肥和迟效肥4. 肥料施用与环境和人的关系例子:氮素在环境中的行为第二节 植物营养学的发展概况一、植物营养研究的早期探索1. 尼古拉斯(Nicholas)15世纪,首位从事植物营养研究的人2. 海尔蒙特(Van Helmont)1640年,柳条试验,“水的营养学说”3. 渥特沃(John Woodward)土和盐都有营养作用4. 格鲁伯(J. R.
7、 Glauber)硝有营养作用5. 泰伊尔(Von Thaer)19世纪初期,“腐殖质营养学说”二、植物营养学的建立和李比希的工作(一)植物矿物质营养学说 (theory of mineral nutrition) (1840年)要点:土壤中矿物质是一切绿色植物唯一的养料,厩肥及其它有机肥料对于植物生长所起的作用,并不是由于其中所含的有机质,而是由于这些有机质在分解时所形成的矿物质。意义:理论上,否定了当时流行的“腐殖质学说”,说明了植物营养的本质;是植物营养学新旧时代的分界线和转折点,使维持土壤肥力的手段从施用有机肥料向施用无机肥料转变有了坚实的基础;实践上促进了化肥工业的创立和发展;推动了
8、农业生产的发展。“植物矿物质营养学说”的创立具有划时代的意义。(二)养分归还学说 (theory of nutrient returns)要点: 随着作物的每次收获,必然要从土壤中取走大量养分; 如果不正确地归还土壤的养分,地力就将逐渐下降; 要想恢复地力就必须归还从土壤中取走的全部养分。 意义:对恢复和维持土壤肥力有积极作用养分归还方式:一是通过施用有机肥料,二是通过施用无机肥料。二者各有优缺点,若能配合施用则可取长补短,增进肥效,是农业可持续发展的正确之路。在未来农业发展过程中,养分归还的主要方式是“合理施用化肥”,而不是像“有机农业”鼓吹者提倡的“只需施用有机肥料”。 (Why?)因为,
9、施用化肥是提高作物单产和扩大物质循环的保证,目前,农作物所需氮素的70是靠化肥提供的,因而合理施用化肥是现代农业的重要标志。我国几千年传统农业的特点就是有机农业,其特征是作物单产低,因此不符合人口增长的需求。考虑到有机肥料所含养分全面兼有培肥改土的独特功效,充分利用当地一切有机肥源,不仅是农业可持续发展的需要,而且也是减少污染和提高环境质量的需要。(三)最小养分律 (law of minimum nutrient) (1843年)要点:作物产量的高低受土壤中相对含量最低的养分所制约。也就是说,决定作物产量的是土壤中相对含量最少的养分(图1-1)。最小养分会随条件变化而变化(图1-2),如果增施
10、不含最小养分的肥料,不但难以增产,还会降低施肥的效益。20世纪50年代 60年代 70年代意义:指出作物产量与养分供应上的矛盾,表明施肥要有针对性,应合理施肥。氮是最小养分 磷是最小养分 钾是最小养分 图1-1 最小养分律示意图图1-2 最小养分随条件而变化的示意图 综上可见,李比希是植物营养学科杰出的奠基人!三、植物营养学科的发展(一)植物营养原理研究的发展概况1. 布森高(Boussingault)1834年,开创了田间试验2. 鲁茨(Lawes)1843年创立英国洛桑试验站3. 萨克斯(Sachs)和克诺普(Knop)1860年和1861年,水培试验研究的先躯4. 普良尼施尼柯夫20世纪
11、初,主张把植物土壤肥料联系起来研究,提出“肥肥土,土肥苗”的观点,形成了“生理学路线的农业化学派”5. 罗宗洛(18981978)20世纪2030年代,在氮素营养及微量元素方面做了大量工作6. 阿农(Arnon)和斯道特(Stout)1939年,提出高等植物必需营养元素的三条标准7. 植物必需微量元素的发现和确定:1860,19221938,1954,19878. 霍格兰(Hoagland)和阿农(Arnon)20世纪2030年代,研究营养液中营养元素的比例和浓度,发表了许多标准的营养液配方,沿用至今9. 1920s以来元素功能方面研究进展迅速10. 根系研究工作进展迅速 海得尔(Hiltne
12、r)在1904年提出根际得概念; 德国马斯纳(H. Marschner)自20世纪80年代以来,系统地开展了植物根际营养的研究; 1999年华南农业大学成立了根系生物学研究中心21世纪的重要课题11. Rorison在1969年提出了“植物营养生态学”12. Epstien在1972年创立了“植物营养遗传学”我国的严小龙等在1997年编著了植物营养遗传学专著(二)肥料施用的发展概况1. 世界化肥应用情况 19世纪中、后期,磷肥和钾肥生产先后建立并得到发展; 20世纪初合成氨生产出现,氮肥生产迅速发展; 始于1920s的复混肥料是当今化肥发展的方向。在全世界化肥消费总量中,各种复肥约占50%,发
13、达国家则占70%以上; 1990s以来,缓控释肥、叶面肥和水溶肥等新剂型研发成为国际上化肥研制开发的热点; 目前,发达国家的化肥销售与农业化学服务密切结合。2. 我国化肥使用情况 二十世纪50年代,农田仍以有机肥料为主,配施少量氮肥; 60年代随着小氮肥工业的发展,氮肥用量增加,并配施少量磷肥; 70年代以来随着大氮肥工业的发展,氮肥、磷肥施用量大大增加,并配施钾肥和其它营养元素; 80年代我国复混肥料生产加速发展,2008年复混肥料消费量约占化肥消费总量的32%,2010年上升至 %; 本世纪以来我国在缓控释肥、叶面肥和水溶肥的研制开发方面有较大进展。 2005年以来,农业部组织各省开展新一
14、轮的土壤调查,为推广测土配方施肥技术提供依据和指导; 我国的农化服务体系初步形成。目前,我国的施肥情况正在向成熟阶段过渡。植物营养学完整的学科体系的建立经历了:植物营养研究的古典时期(19世纪)、新古典发展时期(20世纪前半叶)、现代植物营养发展时期(20世纪50年代以后)。在现代植物营养发展时期,植物营养学科逐渐与其它学科相互滲透,形成许多新的研究领域并获得大量成果。经过长期积累并不断充实,植物营养学已逐渐发展为一门体系更为完整,内容更加丰富,并具有现代科技特点的一门学科。四、植物营养学面临的任务1. 利用生物技术,改良植物对营养元素的吸收利用效率,以致在少施甚至不施化肥的情况下植物仍然能正
15、常生长并获得高产;2. 利用生物技术,改良植物本身的营养特性以适应“问题土壤”,提高“问题土壤”的生产力。第三节 植物营养学的范畴及研究方法一、范畴1. 植物营养生理学2. 植物根际营养3. 植物营养遗传学4. 植物营养生态学5. 植物的土壤营养6. 肥料及现代施肥技术研究的最终目的:以植物营养特性为依据,在原有土壤肥力的基础上,通过施肥措施,为植物提供良好的营养环境,或通过生物技术,改良植物的营养特性,并在其它农业措施的配合下,达到高产、优质、高效的综合效果,并对环境质量和土壤培肥作出应有的贡献。二、研究方法 (一)调查研究:查阅资料、调查座谈会、现场观察(二)试验研究1. 生物田间试验法2
16、. 生物模拟法:盆栽试验:土培法、砂培法和水培法;培养试验:分根培养、流动培养和灭菌培养3. 化学分析法4. 数理统计法5. 核素技术法6. 酶学诊断法7. 其他新技术,如X光衍射、电子探针、电镜观察、核磁共振等技术。三、植物营养学的主要课程1. 植物营养原理 植物营养学(导论) 2. 肥料基础理论 (植物营养与肥料)3. 植物营养研究法4. 作物施肥法 5. 肥料科学与技术6. 养分资源利用与管理本章复习题:1. 植物营养学是研究营养物质对植物的 ,研究植物对营养物质 、 、 和 的规律,以及植物与 之间营养物质和能量交换的科学。2. 肥料具有 、 和 等作用。3. 李比希创立的 学说,在理
17、论上否定了 学说,说明了植物营养的本质是 ;在实践上,促进了 和 的发展,因此,具有划时代的意义。4. 根据李比希的养分归还学说,今后归还土壤养分的方式应该是 。5. 最小养分律告诉我们,施肥应该 。6. 植物营养学的主要任务是以 为理论指导,通过 手段为植物提供充足的养分,创造良好的营养环境,或通过 手段调节植物体的代谢,提高植物营养效率,从而达到明显提高作物产量和改善产品品质的目的。7. 植物营养学的主要研究方法有 和 。8. 讨论题:简述植物营养与肥料在农业生产中的地位和作用。第二章 植物的营养元素主要内容 基本要求植物体的组成成分 了解植物的必需营养元素 掌握植物的有益元素 了解第一节
18、 植物体的组成成分一、植物体的组成成分75%95% 水分 新鲜植株 烘干 95% 以气体挥发5%25% 干物质 煅烧 5% 灰分(成分复杂)二、影响植物体内矿质元素种类和含量的因素1. 遗传因素如:禾本科植物需Si、淀粉植物块茎含K多、豆科植物含N较多等;2. 环境条件(生长环境)如:盐渍土上生长的植物含Na和Cl较多、沿海的植物含I较多、酸性红壤上的植物含Al和Fe较多。第二节 植物的必需营养元素一、植物必需营养元素 (essential nutrient element) 的标准及种类(一)标准(定义)1. 这种元素对所有高等植物的生长发育是不可缺少的。如果缺少该元素,植物就不能完成其生活
19、史必要性 (necessity)2. 这种元素的功能不能由其它元素所代替。缺乏这种元素时,植物会表现出特有的症状,只有补充这种元素后症状才能减轻或消失专一性 (specificity)3. 这种元素必须直接参与植物的代谢作用,对植物起直接的营养作用,而不是改善环境的间接作用直接性 (directness)(二)种类 共17种,其中大量元素 (macroelements) 九种:碳(carbon, C)、氢(hydrogen, H)、氧(oxygen, O)、氮(nitrogen, N)、磷(phosphorus, P)、钾(potassium, K)、钙(calcium, Ca)、镁(magn
20、esium (Mg)、硫(sulfur, S);微量元素 (microelements) 七种:铁(iron, Fe)、锰(manganese, Mn)、锌(zinc, Zn)、铜(copper, Cu)、硼(boron, B)、钼(molybdenum, Mo)、氯(chlorine, Cl)、镍(nickel, Ni)。二、必需营养元素的分组和来源 C、H、O 非矿质元素(天然营养元素) 来自空气和水大量元素 N、P、K植物营养三要素(0.1%以上) 或肥料三要素Ca、Mg、S中量元素 矿质元素,Fe、Mn、Zn、Cu 来自土壤微量元素 (0.1%以下) B、Mo、Cl、Ni三、必需营养元
21、素的主要功能第一类:C、H、O、N、S1. 组成有机体的结构物质和生活物质;2. 组成酶促反应的原子基团;第二类:P、B1. 形成连接大分子的酯键; 2. 储存及转换能量;第三类:K、Mg、Ca、Mn、Cl1. 维护细胞内的有序性,如渗透调节、电性平衡等;2. 活化酶类; 3. 稳定细胞壁和生物膜构型;第四类:Fe、Cu、Zn、Mo、(Ni)1. 组成酶辅基; 2. 组成电子转移系统;植物必需营养元素的各种功能一般通过植物的外部形态表现出来。而当植物缺乏或过量吸收某一元素时,会出现特定的外部症状,这些症状统称为“植物营养失调症(nutritional disorder)”,包括“营养元素缺乏症
22、(nutrient deficiency symptom)”和“元素毒害症(element toxicity symptom)”。四、必需营养元素间的相互关系1. 同等重要律植物必需营养元素在植物体内的数量不论多少都是同等重要的生产上要求:平衡供给养分2. 不可代替律植物的每一种必需营养元素都有特殊的功能,不能被其它元素所代替生产上要求:全面供给养分第三节 植物的有益元素一、有益元素 (beneficial element / helpful element) 的概念某些元素适量存在时能促进植物的生长发育; 或者虽然它们不是所有植物所必需,但对某些特定的植物缺是不可缺少的,这些类型的元素称为“
23、有益元素”,也称“农学必需元素”。二、有益元素在植物体内的含量、分布和形态(见表2-1)三、有益元素的种类和功能(见表2-2)表2-1 有益元素在植物体内的含量、分布和形态元 素含 量分 布形 态硅(Si)莎草科、禾本科:10%15旱地禾本科等:1%3豆科植物等:1 000mg/kg离子态硒(Se)高硒累积型:数千mg/kg非硒累积型:叶、茎、根无机态(SeO42-)有机态挥发态铝(Al)一般含量:20200mg/kg铝累积型:0.1%非累积型:叶部老叶幼叶离子态(Al3+)表2-2 有益元素的种类和功能元 素主要生理功能主要受益植物硅(Si)参与细胞壁的组成(增强植物的硬度);影响植物光合作
24、用与蒸腾作用;提高植物的抗逆性;与其它养分相互作用禾本科植物(如水稻、小麦、大麦)钠(Na)刺激植物生长;调节细胞渗透压;影响植物水分平衡与细胞伸展;代替钾行使营养功能,如部分酶激活等C4或CAM类植物(如甜菜等)钴(Co)参与豆科植物根瘤固氮;调节酶或激素活性,刺激植物生长;稳定叶绿素豆科固氮植物(必需)镍(Ni)刺激种子发芽和幼苗生长;催化尿素降解;防治某些病害一般植物(已归入必需元素)硒(Se)刺激植物生长;增强植物体的抗氧化作用百合科、十字花科、豆科、禾本科(低浓度)铝(Al)刺激植物生长;影响植物颜色;某些酶的激活剂喜酸性植物(如茶树)本章复习题:1. 影响植物体中矿质元素含量的因素
25、主要是 和 。2. 植物必需营养元素的判断标准可概括为 性、 性和 性。3. 目前,已确定的植物必需营养元素有 种,其中大量元素有 ;微量元素有 。 4. 植物必需营养元素间的相互关系表现为 和 。5. 植物的有益元素中, 对于水稻、 对于甜菜、 对于豆科作物、 对于茶树均是有益的。6. 讨论题:为什么氮、磷、钾被称为植物营养三要素或肥料三要素? 第三章 植物对营养物质的吸收主要内容 基本要求植物的营养特性 了解植物根系对养分的吸收 掌握植物叶部对养分的吸收 了解影响植物吸收养分的外界环境条件 了解/掌握施肥方法与施肥原则 了解/掌握植物吸收的养分形式:离子或无机分子为主有机形态的物质少部分有
26、效养分(available nutrient):土壤中能被植物根系吸收的无机态养分以及在植物生长期间由有机物质释放出来的无机态养分。植物吸收养分的部位:矿质养分根为主,叶也可 根部吸收(主要)气态养分叶为主,根也可 叶部吸收第一节 植物的营养特性I、植物营养的共性和个性一、共性:所有高等植物都需要17种必需营养元素二、个性:不同植物、或同种植物的不同品种、甚至同一植物在不同生育期1. 对营养元素的种类和数量需要不同;2. 对介质养分的吸收能力不同;3. 对肥料的需要量不同;4. 对肥料形态的要求不同;II、植物根系的营养特性一、根的类型、数量和分布(一)根的类型1. 分类 从整体上分 直根系:
27、根深 须根系:水平生长 主根 定根 形成直根系 从个体上分 侧根 不定根 组成须根系2. 根的类型与养分吸收的关系直根系能较好地利用深层土壤中的养分须根系能较好地利用浅层土壤中的养分农业生产中常将两种根系类型的植物种在一起间种、混种、套种。 a. 须根系 b. 直根系图3-1 直根系和须根系示意图(二)根的数量用单位体积或面积土壤中根的总长度表示,如:LV(cm/cm3)或 LA(cm/cm2);一般,须根系的LV 直根系的LV。根系数量越大,总面积越大,根系与养分接触的机率越高反映根系的营养特性。(三)根的构型 (root architecture)1. 含义:指同一根系中不同类型的根 (直
28、根系) 或不定根 (须根系) 在生长介质中的空间造型和分布。具体来说,包括立体几何构型和平面几何构型。2. 根构型与养分吸收:不同植物具有不同的根构型,浅根系由于其在表层的根相对较多而更有利于对表层养分的吸收;深根系则相反。(四)根的分布根系分布合理,有利于提高养分的吸收效率。根 根 根 根 养分吸收范围 A. 分布稀疏 B. 分布较密 图3-2 根系的分布与养分吸收效率二、根的结构特点与养分吸收 从根尖向根茎基部依次分为根冠、分生区、伸长区和根毛区和成熟区五个部分(图3-3)。根的横切面从外向根内可分为表皮、(外)皮层、内皮层和中柱等几个部分(图3-4)。三、根的生理特性(一)根的阳离子交换
29、量(cation exchange capacity, CEC)1. 含义:单位数量根系吸附的阳离子的厘摩尔数,单位为:cmol/kg一般,双子叶植物的CEC较高,单子叶植物的较低2. 根系CEC与养分吸收的关系(1) 二价阳离子的CEC越大,被吸收的数量也越多(2) 反映根系利用难溶性养分的能力成熟区根毛区伸长区分生区根冠根毛中柱鞘内皮层皮层表皮原形成层静止中心韧皮部木质部图3-3 植物根系纵切面示意图图3-4 大麦(Hordeue vulgare )根的横断面(二)根的氧化还原能力根的氧化还原能力反映根的代谢活动,所以与植物吸收养分的能力有关1. 根的氧化力(强) 根的活力(强) 根的吸收
30、能力(强) 如水稻,既具有氧气输导组织,向根系分泌O2;又具有乙醇酸氧化途径,分解H2O2形成O2。所以,根的颜色可反映根系代谢活动的强弱,由此可推断根系吸收养分的能力:新生根氧化力强Fe(OH)3在根外沉淀根呈白色成熟根氧化力渐弱Fe(OH)3在根表沉淀根棕褐色老病根氧化力更若Fe(OH)3还原为Fe2S3 根黑色2. 根的还原力根的还原力对需还原后才被吸收的养分尤为重要,如:Fe3+ Fe2+ 试验表明:还原力强的作物在石灰性土壤上不易缺铁。推论:若此还原力是属基因型差异,就可以通过遗传学的方法改善这种特性,从而提高植物对铁素的吸收效率。四、根际效应(一)根际(rhizosphere)的概
31、念根际:由于植物根系的影响而使其理化生物性质与原土体有显著不同的那部分根区土壤。根际效应:在根际中,植物根系不仅影响介质土壤中的无机养分的溶解度,也影响土壤生物的活性,从而构成一个 “根际效应”。“根际效应”反过来又强烈地影响着植物对养分的吸收。(二)根际养分1. 根际养分浓度分布根际养分的分布与土体比较可能有以下三种状况:养分富集:根系对水分的吸收速率 养分的吸收速率养分亏缺:根系对水分的吸收速率 阳离子 pH上升 (影响最大) 阳离子 阴离子 pH下降(2) 作用:影响养分的有效性,例如: 石灰性土壤施用铵态氮肥、钾肥,pH下降,使多种营养因素的生物有效性增加 酸性土壤施用硝态氮肥,pH上
32、升,磷的有效性提高 豆科作物在固氮过程中酸化了根际,提高了难溶性磷的利用率 豆科植物在缺磷条件下,根系不正常生长形成簇状根或排根,分泌H能量较强,有效的降低根际pH,并溶解土壤中的难溶性磷2. 根际Eh环境(1) 影响因素:作物种类旱作根际Eh 周围土体 介质养分状况指养分的氧化态或还原态(2) 作用:影响养分的有效性(四)根际生物学环境1. 根系分泌物(1)根系分泌物的种类无机物:CO2、矿质盐类(细胞膜受损时才大量外渗)有机物:糖类、蛋白质及酶、氨基酸、有机酸等(2)根系分泌物的农业意义 微生物的能源和营养材料 促进养分有效化 间作或混作中有互利作用2. 根际微生物对植物吸收养分的影响如下
33、:(1) 矿化有机物:释放CO2和无机养分(2) 产生和分泌有机酸:络合金属离子,促进养分的吸收和转移;同时,降低土壤pH值,促进难溶性化合物的溶解和养分释放(3) 固定和转化大气中的养分:固氮微生物能将空气中的分子态氮转化为植物可利用的形式(4) 产生和释放生理活性物质:促进根系的生长和养分的吸收3. 菌根(mycorrhiza)(1) 含义:菌根是土壤真菌与植物根系建立共生根系所形成的共生体。形成这种共生体的真菌叫菌根真菌。它们能在2000多种植物的根部侵染形成菌根。(2) 主要类型:外生菌根和内生菌根 (3) 共生体系的生理基础: 提供碳水化合物植物根系 菌根真菌 提供吸收的营养物质(4
34、) 作用:促进养分的吸收(主要原因:菌根扩大了根系的吸收面积)第二节 植物根系对养分的吸收吸收 (absorption / uptake) 的含义:植物的养分吸收是指养分进入植物体内的过程泛义的吸收指养分从外部介质进入植物体中的任何部分确切的吸收指养分通过细胞原生质膜进入细胞内的过程根系对养分吸收的过程包括:1. 养分向根表面的迁移;2. 养分进入质外体;3. 养分进入共质体迁移 吸收 即 养分从土壤 根表 根内 (截获、质流、扩散) (主动、被动) 一、土壤养分向根表面迁移(一)截获 (interception)1. 定义:是指植物根系在生长过程中直接接触养分而使养分转移至根表的过程2. 实质:接触交换3. 数量:约占1,远小于植物的需要(二)质流 (mass flow)1. 定义:是指由于水分吸收形成的水流而引起养分离子向根表迁移的过程。2. 影响因素:与蒸腾作用呈正相关;与离子在土壤溶液中的溶解度呈正相关。3. 迁移的