资源描述
概率分布巩固练习
一、填空题
1、设随机变量ξ的分布列由P(ξ=i)=C·i确定,i=1,2,3,则C的值为_______
2、如图所示,A、B两点5条连线并联,它们在单位时间内能通过的最大信息量依次为2,3,4,3,2.现记从中任取三条线且在单位时间内都通过的最大信息总量为ξ,则P(ξ≥8)=_______.
3、一个电路如图所示,A、B、C、D、E、F为6个开关,其闭合的概率都是,且是相互独立的,则灯亮的概率是________.
4、箱中装有标号为1,2,3,4,5,6且大小相同的6个球.从箱中一次摸出两个球,记下号码并放回,如果两球号码之积是4的倍数,则获奖.现有4人参与摸奖,恰好有3人获奖的概率是________.
5、已知X的概率分布表为
X
-1
0
1
P
,且Y=aX+3,E(Y)=,则a的值为________.
6、一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c(a、
b、c∈(0,1)),已知他投篮一次得分的均值为2,则+的最小值为________.
二、解答题
7、在一次考试中共有8道选择题,每道选择题都有4个选项,其中有且只有一个选项是正确的.某考生有4道题已选对正确答案,其余题中有两道只能分别判断2个选项是错误的,还有两道题因不理解题意只好乱猜.
(1)求该考生8道题全答对的概率;
(2)若评分标准规定:“每题只选一个选项,选对得5分,不选或选错得0分”,求该考生所得分数的概率分布表.
8、某工厂生产甲、乙两种产品.甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%.生产1件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产1件乙产品,若是一等品则获得利润6万元,若是二等品则亏损2万元.设生产各件产品相互独立.
(1)记X(单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,求X的概率分布表;
(2)求生产4件甲产品所获得的利润不少于10万元的概率.
9、某公司是否对某一项目投资,由甲、乙、丙三位决策人投票决定,他们三人都有“同意”、“中立”、“反对”三类票各一张,投票时,每人必须且只能投一张票,每人投三类票中的任何一类票的概率都为,他们的投票相互没有影响,规定:若投票结果中至少有两张“同意”票,则决定对该项目投资;否则,放弃对该项目的投资.
(1)求该公司决定对该项目投资的概率;
(2)求该公司放弃对该项目投资且投票结果中最多有一张“中立”票的概率.
10.投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.
(1)求投到该杂志的1篇稿件被录用的概率;
(2)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.
11、红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A、乙对B、
丙对C各一盘.已知甲胜A、乙胜B、丙胜C的概率分别为0.6、0.5、0.5.假设各盘比
赛结果相互独立.
(1)求红队至少两名队员获胜的概率;
(2)用ξ表示红队队员获胜的总盘数,求ξ的概率分布表和数学期望E(ξ).
12、甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设
在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.
(1)求甲获得这次比赛胜利的概率;
(2)设ξ表示从第3局开始到比赛结束所进行的局数,求ξ的概率分布表及数学期望.
展开阅读全文