1、万有引力与航天知识梳理1、开普勒行星运动定律(1).所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上.(2).对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积.(3).所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等. (K只与中心天体质量M有关)行星轨道视为圆处理,开三变成(K只与中心天体质量M有关)2、 万有引力定律:自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体质量的乘积成正比,跟它们距离的二次方成反比。 表达式:适用于两个质点(两个天体)、一个质点和一个均匀球(卫星和地球)、两个均匀球。(质量均匀分布的球可以看作质量在球心的质点) 3
2、、万有引力定律的应用:(天体质量M, 卫星质量m,天体半径R, 轨道半径r,天体表面重力加速度g ,卫星运行向心加速度,卫星运行周期T)两种基本思路:1万有引力=向心力 (一个天体绕另一个天体作圆周运动时,r=R+h ) G 人造地球卫星(只讨论绕地球做匀速圆周运动的人造卫星r=R+h):,r越大,v越小;,r越大,越小;,r越大,T越大;,r越大,越小。(1) 用万有引力定律求中心星球的质量和密度求质量:天体表面任意放一物体重力近似等于万有引力:mg = G 当一个星球绕另一个星球做匀速圆周运动时,设中心星球质量为M,半径为R,环绕星球质量为m,线速度为v,公转周期为T,两星球相距r,由万有
3、引力定律有:,可得出中心天体的质量: 求密度2 在天体表面任意放一物体重力近似等于万有引力 (重力是万有引力的一个分力) 地面物体的重力加速度:mg = G g = G9.8m/s2 高空物体的重力加速度:mg = G g = G9.8m/s23、万有引力和重力的关系: 一般的星球都在不停地自转,星球表面的物体随星球自转需要向心力,因此星球表面上的物体所受的万有引力有两个作用效果:一个是重力,一个是向心力。星球表面的物体所受的万有引力的一个分力是重力,另一个分力是使该物体随星球自转所需的向心力4、第一宇宙速度: -在地球表面附近(轨道半径可视为地球半径)绕地球作圆周运动的卫星的线速度,在所有圆
4、周运动的卫星中是最大的运行速度,是最小的发射速度. 卫星贴近地球表面飞行地球表面任意放一物体 : =7.9km/s 7.9103m/s称为第一宇宙速度;11.2103m/s称为第二宇宙速度;16.7103m/s称为第三宇宙速度。4近地卫星。近地卫星的轨道半径r可以近似地认为等于地球半径R,又因为地面附近,所以有。它们分别是绕地球做匀速圆周运动的人造卫星的最大线速度和最小周期。同步卫星。“同步”的含义就是和地球保持相对静止(又叫静止轨道卫星),所以其周期等于地球自转周期,既T=24h,根据可知其轨道半径是唯一确定的,经过计算可求得同步卫星(三万六千千米),而且该轨道必须在地球赤道的正上方,卫星的通讯卫星(又称同步卫星)相对于地面静止不动,其圆轨道位于赤道上空运转方向必须是由西向东。其周期与地球自转周期相同(一天),其轨道半径是一个定值。离地面的高度为h=3.6107m5.6R地5 卫星在发射时加速升高和返回减速的过程中,均发生超重现象,进入圆周运动轨道后,发生完全失重现象,一切在地面依靠重力才能完成的实验都无法做6 经典力学的局限性牛顿运动定律只适用于解决宏观、低速问题,不适用于高速运动问题,不适用于微观世界。