收藏 分销(赏)

浙江省各市2013年中考数学分类解析-专题5-数量和位置变化.doc

上传人:仙人****88 文档编号:5991196 上传时间:2024-11-25 格式:DOC 页数:20 大小:1.21MB
下载 相关 举报
浙江省各市2013年中考数学分类解析-专题5-数量和位置变化.doc_第1页
第1页 / 共20页
浙江省各市2013年中考数学分类解析-专题5-数量和位置变化.doc_第2页
第2页 / 共20页
浙江省各市2013年中考数学分类解析-专题5-数量和位置变化.doc_第3页
第3页 / 共20页
浙江省各市2013年中考数学分类解析-专题5-数量和位置变化.doc_第4页
第4页 / 共20页
浙江省各市2013年中考数学分类解析-专题5-数量和位置变化.doc_第5页
第5页 / 共20页
点击查看更多>>
资源描述

1、浙江省各市2013年中考数学分类解析 专题5 数量和位置变化一、选择题1. (2013年浙江金华、丽水3分)如图1,在RtABC中,ACB=900,点P以每秒1cm的速度从点A出发,沿折线ACCB运动,到点B停止。过点P作PDAB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示。当点P运动5秒时,PD的长是【 】A1.5cm B1.2cm C1.8cm D2cm 当时,。故选B。2. (2013年浙江湖州3分)如图,在1010的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点若抛物线经过图中的三个格点,则以这三个格点为顶点的三角形称为抛物线的“内接

2、格点三角形”以O为坐标原点建立如图所示的平面直角坐标系,若抛物线与网格对角线OB的两个交点之间的距离为,且这两个交点与抛物线的顶点是抛物线的内接格点三角形的三个顶点,则满足上述条件且对称轴平行于y轴的抛物线条数是【 】A16 B15 C14 D133. (2013年浙江衢州3分)抛物线的图象先向右平移2个单位,再向下平移3个单位,所得图象的函数解析式为,则b、c的值为【 】Ab=2,c=6 Bb=2,c=0 Cb=6,c=8 Db=6,c=24. (2013年浙江衢州3分)如图,正方形ABCD的边长为4,P为正方形边上一动点,沿ADCBA 的路径匀速移动,设P点经过的路径长为x,APD的面积是

3、y,则下列图象能大致反映y与x的函数关系的是【 】故选B。5. (2013年浙江衢州3分)如图,正方形ABCD的边长为4,P为正方形边上一动点,沿ADCBA 的路径匀速移动,设P点经过的路径长为x,APD的面积是y,则下列图象能大致反映y与x的函数关系的是【 】6. (2013年浙江绍兴4分)如图是我国古代计时器“漏壶”的示意图,在壶内盛一定量的水,水从壶底的小孔漏出壶壁内画有刻度,人们根据壶中水面的位置计时,用x表示时间,y表示壶底到水面的高度,则y与x的函数关系式的图象是【 】【答案】C。7. (2013年浙江台州4分)如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点

4、D在y轴上,且在A的下方,点E是边长为2,中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为【 】A.3 B. C.4 D.二、填空题1. (2013年浙江湖州4分)如图,已知点A是第一象限内横坐标为的一个定点,ACx轴于点M,交直线y=x于点N若点P是线段ON上的一个动点,APB=30,BAPA,则点P在线段ON上运动时,A点不变,B点随之运动求当点P从点O运动到点N时,点B运动的路径长是 2. (2013年浙江绍兴5分)在平面直角坐标系中,O是原点,A是x轴上的点,将射线OA绕点O旋转,使点A与双曲线上的点B重合,若点B的纵坐标是1,则点A的横坐标是 3

5、. (2013年浙江台州5分)设点M(1,2)关于原点的对称点为M,则M的坐标为 .4. (2013年浙江温州5分)如图,在平面直角坐标系中,ABC的两个顶点A,B的坐标分别为(-2,0),(-1,0),BCx轴,将ABC以y轴为对称轴作轴对称变换,得到ABC(A和A,B和B,C和C分别是对应顶点),直线经过点A,C,则点C的坐标是 .三、解答题1. (2013年浙江金华、丽水10分)如图,已知抛物线与直线交于点O(0,0),。点B是抛物线上O,A之间的一个动点,过点B分别作轴、轴的平行线与直线OA交于点C,E。(1)求抛物线的函数解析式;(2)若点C为OA的中点,求BC的长;(3)以BC,B

6、E为边构造条形BCDE,设点D的坐标为(,),求,之间的关系式。2. (2013年浙江金华、丽水12分)如图1,点A是轴正半轴上的动点,点B的坐标为(0,4),M是线段AB的中点。将点M绕点A顺时针方向旋转900得到点C,过点C作轴的垂线,垂足为F,过点B作轴的垂线与直线CF相交于点E,点D是点A关于直线CF的对称点。连结AC,BC,CD,设点A的横坐标为,(1)当=2时,求CF的长;(2)当为何值时,点C落在线段CD上;设BCE的面积为S,求S与之间的函数关系式;(3)如图2,当点C与点E重合时,将CDF沿轴左右平移得到,再将A,B,为顶点的四边形沿剪开,得到两个图形,用这两个图形拼成不重叠

7、且无缝隙的图形恰好是三角形。请直接写出符合上述条件的点坐标,3. (2013年浙江宁波9分)已知抛物线与x轴交于点A(1,0),B(3,0),且过点C(0,3)(1)求抛物线的解析式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=x上,并写出平移后抛物线的解析式4. (2013年浙江宁波14分)如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B的坐标为(4,0),点C的坐标为(4,0),点P在射线AB上运动,连结CP与y轴交于点D,连结BD过P,D,B三点作Q与y轴的另一个交点为E,延长DQ交Q于点F,连结EF,BF(1)求直线AB的函数解析式;(2

8、)当点P在线段AB(不包括A,B两点)上时求证:BDE=ADP;设DE=x,DF=y请求出y关于x的函数解析式;(3)请你探究:点P在运动过程中,是否存在以B,D,F为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P的坐标:如果不存在,请说明理由【分析】(1)设直线AB的函数解析式为y=kx+4,把(4,0)代入即可。5. (2013年浙江湖州12分)如图,O为坐标原点,点B在x轴的正半轴上,四边形OACB是平行四边形,sinAOB=,反比例函数(k0)在第一象限内的图象经过点A,与BC交于点F(1)若OA=10,求反比例函数解析式;(2)若点F为BC的中点,且AOF的面积

9、S=12,求OA的长和点C的坐标;(3)在(2)中的条件下,过点F作EFOB,交OA于点E(如图),点P为直线EF上的一个动点,连接PA,PO是否存在这样的点P,使以P、O、A为顶点的三角形是直角三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由(3)分别根据当APO=90时,在OA的两侧各有一点P,得出P1,P2;当PAO=90时,求出P3;当POA=90时,求出P4即可。6. (2013年浙江衢州12分)在平面直角坐标系x、y中,过原点O及点A(0,2)、C(6,0)作矩形OABC,AOC的平分线交AB于点D点P从点O出发,以每秒个单位长度的速度沿射线OD方向移动;同时点Q从点

10、O出发,以每秒2个单位长度的速度沿x轴正方向移动设移动时间为t秒(1)当点P移动到点D时,求出此时t的值;(2)当t为何值时,PQB为直角三角形;(3)已知过O、P、Q三点的抛物线解析式为(t0)问是否存在某一时刻t,将PQB绕某点旋转180后,三个对应顶点恰好都落在上述抛物线上?若存在,求出t的值;若不存在,请说明理由若PQB=90,则有PQ2+BQ2=PB2,即: ,7. (2013年浙江温州14分)如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(6,0),B(0,8),点C的坐标为(0,m),过点C作CEAB于点E,点D为x轴上一动点,连结CD,DE,以CD,DE为边作CDEF。(1)当0 m 8时,求CE的长(用含m的代数式表示);(2)当m =3时,是否存在点D,使CDEF的顶点F恰好落在y轴上?若存在,求出点D的坐标;若不存在,请说明理由;(3)点D在整个运动过程中,若存在唯一的位置,使得CDEF为矩形,请求出所有满足条件的m的值。

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 小学其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服