1、解决问题的策略一一列举教学设计南棵小学 黄玉凤 教学目标:1、经历用列举策略解决简单实际问题的过程,能通过不重复、不遗漏的列举找到符合要求的答案。2、在对解决简单实际问题的过程的反思和交流中,感受一一列举的特点和价值,进一步发展思维的条理性和严密性。3、进一步积累解决问题的经验,增强解决问题的策略意识,并获得解决问题的成功体验,提高学习数学的信心。教学重点:能对信息进行分析并用“一一列举”的策略解决实际问题。教学难点:能不重复、不遗漏地有条理地一一列举解决实际问题。教学准备:课件、课堂小练习、四人小组内提供小棒(18根)一、创设情境,感受策略 1飞镖激趣。 课前让学生玩靶纸有五圈的飞镖游戏,每
2、人投两次。 2引入课题。什么是“策略”?四年级时我们学过哪些解决问题的策略?今天我们要学习一种新的策略这种策略就藏在课前大家玩的飞镖游戏里。飞镖游戏好玩吗?如果曹老师也来投一次,可能中几环?有多少种不同的可能?你能全部说出来吗?像刚才这样,不用列式计算,只要把事情发生的可能情况有条理地罗列出来,就能找到问题的答案,这种策略叫做列举。把所有可能发生的情况按照一定的顺序一个不漏地列举出来,就叫一一列举。列举也是解决问题的一种策略,今天我们就来学习用列举的方法解决一些新的问题。 二、合作探究,体验策略 (一)教学例l 1屏幕出示例1及其场景图,指名读题。 (1)从题中你知道哪些信息?需要解决什么问题
3、? (2)这个“18”应该是长方形羊圈的什么?长和宽可能是几米?2有多少种不同的围法呢?每个座位有18根小棒,每根代表1米,你们可以借助小棒围一围,将长和宽填在表(1)内,注意围的时候要把18根小棒用完。如果用不着小棒,可以直接在表(1)上填,也可以画图或者用自己的方法解决。表(1)长方形的长(米)长方形的宽(米)3汇报交流。(1)有几种不同的围法?每种围法的长和宽各是多少?(2)你是用什么方法解决这个问题的?你认为哪种办法好?为什么?如果是80根栅栏呢?(3)大家都认为列表的方法好,那么我们来看看几位同学列的表。(各拿一份按顺序列举的和没有按顺序列举的表在实物展示台上让学生比较,使他们明确列
4、举时要按照一定的顺序,才能做到既不重复又不遗漏)4观察思考。(1)如果你是王大叔,会选择哪一种围法?为什么?(2)口算四个长方形的面积,观察比较后有什么发现?长方形的长(米)8765长方形的宽(米)1234长方形的面积(平方米)8141820小结:周长相等的长方形面积不一定相等。在周长不变的情况下,长和宽越接近,面积就越大;长和宽相差越大,面积就越小。5巩固列举(练习十一第1题)。(1)你能否一眼就看出这两辆车几时几分第二次同时发车?怎么办?(2)1路车几时开始发车,是怎样发车的?2路车呢?学生完成表格,找到答案。(3)从表中你能看出这两辆车第三次同时发车是几时几分吗?(二)教学例21屏幕出示
5、例2及其场景图,自主读题。这道题为我们提供了哪些信息?要解决什么问题?2你是怎么理解“最少订阅1本,最多订阅3本”这句话的?这道题比较复杂,我们可以分订一本、两本、三本三种情况分别进行考虑。每种情况有几种订法,一共有多少种不同的订法?(生独立思考后小组交流)3全班交流。为了更清楚地看出每种订法分别订的是什么杂志,我们还可以列一张表,划表示订法。分步出示表格,指导生用划的方法表示订法,学生完成表格。4如果不画表,要简洁地把每一种订法订的是什么杂志表示出来,可以怎样表示?(学生可能会说用书名的第一个字代替,或者用不同的字母、数字、符号、图形等表示三种杂志,师通过比较引导学生用最简洁的方式表示)三、比较反思,感悟策略1才我们解决了王大叔和小华的问题,这两个问题有什么共同之处?想一想,我们都是怎么得到答案的?2例1和例2在列举时有什么不同的地方?要得到全部答案,列举时需要注意些什么?指出:要按一定顺序列举,才能做到既不重复,又不遗漏。当情况比较复杂时要先分类,再列举。列举时可以列表,也可以用文字或符号、字母等来表示。总之,要把每种可能一一列举出来,并且要用尽可能简单的方法表示,让人一看就明白。