1、资料内容仅供您学习参考,如有不当或者侵权,请联系改正或者删除。电大统计学原理计算题(考试复习必备)1 某车间有30个工人看管机器数量的资料如下:5 4 2 4 3 4 3 4 4 5 4 3 4 2 64 4 2 5 3 4 5 3 2 4 3 6 3 5 4以上资料编制变量分配数列。答案:看管机器台数(台)工人人数(人)频率(%)2345647125210.3320.3340.0010.676.67合计30100.00说明: 对离散变量, 如果变量值的变动幅度小, 就能够一个变量值对应一组, 用单项式分组。2 某班40名学生统计学考试成绩分别为:68 89 88 84 86 87 75 73
2、 72 6875 82 97 58 81 54 79 76 95 7671 60 90 65 76 72 76 85 89 9264 57 83 81 78 77 72 61 70 81学校规定:60分以下为不及格,6070分为及格,7080分为中,8090分为良,90100分为优。要求:(1)将该班学生分为不及格 及格 中 良 优五组,编制一张次数分配表。(2)指出分组标志及类型; 分组方法的类型; 分析本班学生考试情况。答案:(1)成 绩学生人数(人)频率(%)60分以下60-7070-8080-9090-10036151247.515.037.530.0010.00合 计40100.00
3、(2)分组标志为”成绩”,其类型为”数量标志”; 分组方法为:变量分组中的组距式分组,而且是开口式分组; 本班学生的考试成绩的分布呈两头小,中间大的”正态分布”的形态。3 某企业10月份生产情况( 单位: 台) : 车 间实际产量计划产量第一车间第二车间第三车间440400650400440700计算该企业各车间和全厂产量计划完成%。计算产量计划完成情况实际产量( 台) 计划产量( 台) 计划完成%第一车间第二车间第三车间440400650400440700110.090.992.8企业1490154096.8全厂产量计划完成96.8%, 尚差3.2%。4 某工业集团公司工人工资情况按月工资(
4、 元) 分组企业个数各组工人所占比重( %) 400500500600600700700800800以上364452025301510合 计22100计算该集团工人的平均工资。计算表如下: 月工资组中值X各组工人比重( %) 450550650750850202530151090.0137.5195.0112.55.0合 计100620.0该工业集团公司工人平均工资620元。5 某厂三个车间一季度生产情况如下: 第一车间实际产量为190件, 完成计划95%; 第二车间实际产量250件, 完成计划100%; 第三车间实际产量609件, 完成计划105%, 三个车间产品产量的平均计划完成程度为:
5、另外, 一车间产品单位成本为18元/件, 二车间产品单位成本12元/件, 三车间产品单位成本15元/件, 则三个车间平均单位成本为: 元/件以上平均指标的计算是否正确? 如不正确请说明理由并改正。解: 两种计算均不正确。平均计划完成程度的计算, 因各车间计划产值不同, 不能对其进行简单平均, 这样也不符合计划完成程度指标的特定涵义。正确的计算方法是: 平均计划完成程度 平均单位成本的计算也因各车间的产量不同, 不能简单相加, 产量的多少对平均单位成本有直接影响。故正确的计算为: 平均单位成本6 1990年某月份甲 乙两农贸市场某农产品价格和成交量 成交额资料如下: 品种价格( 元/斤) 甲市场
6、成交额( 万元) 乙市场成交量( 万斤) 甲乙丙1.11.41.51.22.81.5211合计5.54试问哪一个市场农产品的平均价格较高? 并说明原因。解: 成交额单位: 万元, 成交量单位: 万斤。品种价格( 元) X甲市场乙市场成交额成交量成交量成交额MM/XFXF甲乙丙1.21.41.51.22.81.51212112.41.41.5合计5.5445.3甲市场平均价格( 元/斤) 乙市场平均价格( 元/斤) 说明: 两个市场销售单价是相同的, 销售总量也是相同的, 影响到两个市场平均价格高低不同的原因就在于各种价格的农产品在两个市场的成交量不同。7 某厂甲 乙两个工人班组, 每班组有8名
7、工人, 每个班组每个工人的月生产量记录如下: 甲班组: 20 40 60 70 80 100 120 70乙班组: 67 68 69 70 71 72 73 70计算甲 乙两组工人平均每人产量; 计算全距, 平均差 标准差, 标准差系数; 比较甲 乙两组的平均每人产量的代表性。解甲班组: 平均每人产量 全距 平均差 A D标准差 标准差系数 平均每人产量 全距 平均差 A D=标准差 标准差系数 分析说明: 从甲 乙两组计算结果看出, 尽管两组的平均每人产量相同, 但乙班组的标志变异指标值均小于甲班组, 因此, 乙班组的人均产量的代表性较好。8 某工厂生产一种新型灯泡5000只, 随机抽取10
8、0只作耐用时间试验。测试结果, 平均寿命为4500小时, 标准差300小时, 试在90%概率保证下, 估计该新式灯泡平均寿命区间;假定概率保证程度提高到95%, 允许误差缩小一半, 试问应抽取多少只灯泡进行测试? 解: N=100 T=2( 1) =X 23060该新式灯泡的平均寿命的区间范围是: -XX45006045006044004560( 2) =应抽取900只灯泡进行测试。9 调查一批机械零件合格率。根据过去的资料, 合格品率曾有过99% 97% 和95%三种情况, 现在要求误差不超过1%, 要求估计的把握程度为95%, 问需要抽查多少个零件? 9 指导书105页-710 在4000
9、件成品中按不重复方法抽取200件进行检查结果有废品8件,当概率为0.9545(T=2)时,试估计这批成品废品量的范围.解: 废品率的范围: 4%2.7% 废品数量区间: 40001.3%-40006.7% 52-26811 检查五位学生统计学原理的学习时间与成绩如下表所示:学习时数(小时)学习成绩(分)44066075010701390根据资料:(1)建立学习成绩(Y)倚学习时间(X)的直线回归方程(2)计算学习时数与学习成绩之间的相关系数解: ( 1) n=5, 学习时数x(小时) 学习成绩y(分) x2 y2 xy4 40 16 1600 1606 60 36 3600 3607 50 4
10、9 2500 35010 70 100 4900 70013 90 169 8100 1170x=40 y=310 x2=370 y2=20700 xy=2740编制直线回归方程: yc = a + bx, 则回归方程为: ( 2) 学习时数与学习成绩之间的相关系数为: 0.95612 根据某地区历年人均收入(元)与商品销售额( 万元) 资料计算的有关数据如下:(X代表人均收,Y代表销售额)N=9 =546 =260 2=34362 =16918计算:(1)建立以商品销售额为因变量的直线回归方程,并解释回归系数的含义(2)若1996年人均收为400元,试推算该年商品销售额12 指导书149页-
11、313 某公司三种商品销售额及价格变动资料如下: 商品名称商品销售额( 万元) 价格变动率( %) 基期报告期甲乙丙500200100065020012002-510计算三种商品价格总指数和销售量总指数。解:三种商品物价总指数: =105.74%销售量总指数=销售额指数价格指数 =114.04%14 某市1998年社会商品零售额1 万元, 1999年增加为15600万元。物价指数提高了4%, 试计算零售量指数, 并分析零售量和物价因素变动对零售总额变动的影响绝对值。解: 已知:万元 万元物价指数=则: 万元零售量指数零售量变动影响的零售额: =15000-1 =3000万元零售物价变动影响的零
12、售额: =15600-15000=600万元零售量增加25%使零售额增加3000万元,零售物价上涨4%使零售额增加600万元,两因素共同影响使零售额增加3600万元。15 ( 1) 已知同样多的人民币,报告期比基期少购买7%的商品,问物价指数是多少?(2) 已知某企业产值报告期比基期增长了24%,职工人数增长了17%,问劳动生产率如何变化?( 1) 解:购买额指数=购买量指数物价指数则物价指数=购买额指数购买量指数=100%(1-7%)=107.5%( 2) 解:工业总产值指数=职工人数指数劳动生产率指数则劳动生产率提高程度百分比=( 工业总产值指数职工人数指数) -1=(1+24%)(1+1
13、7%)-1=5.98%16 中国人口自然增长情况如下:年 份19861987198819891990比上年增加人口16561793172616781629试计算中国在”七五”时期年平均增加人口数量。解:人口数属于时点指标,但新增人口数属于时期指标,因为它反映的是在一段时期内增加的人口数,是累计的结果.因此需采用时期数列计算序时平均数的方法。平均增加人口数17 某商店1990年各月末商品库存额资料如下:月份12345681112库存额605548434050456068又知1月1日商品库存额为63万元。试计算上半年 下半年和全年的平均商品库存额。解:(1)该商店上半年商品库存额:(2)该商店全年
14、商品库存额:(3)该商店全年商品库存额:18 某工厂的工业总产值1988年比1987年增长7%,1989年比1988年增长10.5%,1990年比1989年增长7.8%,1991年比1990年增长14.6%; 要求以1987年为基期计算1988年至1991年该厂工业总产值增长速度和平均增长速度。解: ( 1) 1988年至1991年的总增长速度为: ( 107%110.5%107.8%114.6%) -100%=46.07%(2)1988年至1991年平均增长速度为:19 某地区1990年底人口数为3000万人,假定以后每年以9的增长率增长; 又假定该地区1990年粮食产量为220亿斤,要求到
15、1995年平均每人粮食达到850斤,试计算1995年的粮食产量应该达到多少斤?粮食产量每年平均增长速度如何?解: (1)计算1995年该地区人口总数: 1995年人口总数(2)计算1995年粮食产量: 1995年粮食产量=人均产量总人数=8503137.45=266.68( 亿斤) (3)计算粮食产量平均增长速度:20 某地区粮食产量19851987年平均发展速度是1.03, 19881989年平均发展速度是1.05, 1999年比1989年增长6%, 试求19851990年的平均发展速度。解: 平均发展速度=21某车间有甲、 乙两个生产组, 甲组平均每个工人的日产量为36件, 标准差为9.6
16、件; 乙组工人日产量资料如下: 日产量( 件) 工人数( 人) 1525354515383413要求: 计算乙组平均每个工人的日产量和标准差; 比较甲、 乙两生产小组哪个组的日产量更有代表性? 解: ( 1) ( 件) ( 件) ( 2) 利用标准差系数进行判断: 因为0.305 0.267故甲组工人的平均日产量更有代表性。 22某工厂有1500个工人, 用简单随机重复抽样的方法抽出50个工人作为样本, 调查其月平均产量水平, 得每人平均产量560件, 标准差32.45要求: ( 1) 计算抽样平均误差( 重复与不重复) ; ( 2) 以95%的概率( z=1.96) 估计该厂工人的月平均产量
17、的区间; ( 3) 以同样的概率估计该厂工人总产量的区间。 解: ( 1) 重复抽样: 不重复抽样: ( 2) 抽样极限误差 = 1.964.59 =9件月平均产量的区间: 下限: =560-9=551件 上限:=560+9=569件 ( 3) 总产量的区间: ( 5511500 826500件; 5691500 853500件) 23采用简单随机重复抽样的方法, 在 件产品中抽查200件, 其中合格品190件.要求: ( 1) 计算合格品率及其抽样平均误差( 2) 以95.45%的概率保证程度( z=2) 对合格品率和合格品数量进行区间估计。( 3) 如果极限误差为2.31%, 则其概率保证
18、程度是多少? 解: (1)样本合格率p = n1n = 190200 = 95% 抽样平均误差 = 1.54%(2)抽样极限误差p=zp = 21.54% = 3.08%下限:p=95%-3.08% = 91.92%上限:p=95%+3.08% = 98.08% 则: 总体合格品率区间: ( 91.92% 98.08%) 总体合格品数量区间( 91.92% =1838件 98.08% =1962件) (3)当极限误差为2.31%时, 则概率保证程度为86.64% (z=) 24 某企业上半年产品产量与单位成本资料如下: 月 份产量( 千件) 单位成本( 元) 12345623434573727
19、1736968要求: ( ) 计算相关系数, 说明两个变量相关的密切程度。 ( ) 配合回归方程, 指出产量每增加1000件时, 单位成本平均变动多少? ( ) 假定产量为6000件时, 单位成本为多少元? 解: 计算相关系数时, 两个变量都是随机变量, 不须区分自变量和因变量。考虑到要配和合回归方程, 因此这里设产量为自变量( ) , 单位成本为因变量( ) 月份产量( 千件) 单位成本( 元) 123456234345737271736968491691625532951845041532947614624146216284219276340合 计2142679302681481 ( )
20、计算相关系数: 说明产量和单位成本之间存在高度负相关。( ) 配合回归方程 =-1.82 =77.37 回归方程为: .产量每增加1000件时, 单位成本平均减少.元( ) 当产量为件时, 即, 代入回归方程: .( 元) 25根据企业产品销售额(万元)和销售利润率(%)资料计算出如下数据: n=7 =1890 =31.1 2=535500 2=174.15 =9318 要求: (1) 确定以利润率为因变量的直线回归方程. (2)解释式中回归系数的经济含义. (3)当销售额为500万元时,利润率为多少? 解: ( 1) 配合直线回归方程: b= = =0.0365 a= =-5.41 则回归直
21、线方程为: yc=-5.41+0.0365x ( 2) 回归系数b的经济意义: 当销售额每增加一万元, 销售利润率增加0.0365% ( 3) 计算预测值: 当x=500万元时 yc=-5.41+0.0365=12.8% 26 某商店两种商品的销售资料如下: 商品单位销售量单价( 元) 基期计算期基期计算期甲乙件公斤50150601608121014要求: ( 1) 计算两种商品销售额指数及销售额变动的绝对额; ( 2) 计算两种商品销售量总指数及由于销售量变动影响销售额的绝对额; ( 3) 计算两种商品销售价格总指数及由于价格变动影响销售额的绝对额。 解: ( 1) 商品销售额指数= 销售额
22、变动的绝对额: 元 ( 2) 两种商品销售量总指数= 销售量变动影响销售额的绝对额元 ( 3) 商品销售价格总指数= 价格变动影响销售额的绝对额: 元 27某商店两种商品的销售额和销售价格的变化情况如下: 商品单位销售额( 万元) 1996年比1995年销售价格提高( %) 1995年1996年甲乙米件12040130361012要求: (1)计算两种商品销售价格总指数和由于价格变动对销售额的影响绝对额。 (2)计算销售量总指数,计算由于销售量变动, 消费者增加( 减少) 的支出金额。解: ( 1) 商品销售价格总指数= 由于价格变动对销售额的影响绝对额: 万元 ( 2) )计算销售量总指数:
23、商品销售价格总指数=而从资料和前面的计算中得知: 因此: 商品销售量总指数=, 由于销售量变动, 消费者增加减少的支出金额: - 28某地区1984年平均人口数为150万人, 1995年人口变动情况如下: 月份1369次年1月月初人数102185190192184计算: ( 1) 1995年平均人口数;( 2) 1984-1995年该地区人口的平均增长速度.解: ( 1) 1995年平均人口数=181.38万人( 2) 1984-1995年该地区人口的平均增长速度: 29某地区19951999年粮食产量资料如下: 年份1995年1996年1997年1998年1999年粮食产量( 万斤) 434
24、472516584618要求: ( 1) 计算各年的逐期增长量、 累积增长量、 环比发展速度、 定基发展速度; ( 2) 计算1995年-1999年该地区粮食产量的年平均增长量和粮食产量的年平均发展速度; ( 3) 如果从1999年以后该地区的粮食产量按8%的增长速度发展, 该地区的粮食产量将达到什么水平? 解: ( 1) 年 份1995年1996年1997年1998年1999年粮食产量( 万斤) 环比发展速度 定基发展速度逐期增长量累积增长量434-4721087610876383851610932118894482584113181345668150618105821424034184平均
25、增长量=( 万斤) ( 万斤) ( 2) 平均发展速度( 3) =980.69( 万斤) 30年 份1995年1996年1997年1998年1999年粮食产量( 万斤) 环比发展速度 逐期增长量 434- 10876 44 68 10582 要求: ( 1) 计算各年的逐期增长量、 累积增长量、 环比发展速度、 定基发展速度; ( 2) 计算1995年-1999年该地区粮食产量的年平均增长量和粮食产量的年平均发展速度; ( 3) 如果从1999年以后该地区的粮食产量按8%的增长速度发展, 该地区的粮食产量将达到什么水平? ( 做法见上题) 根31、 据以下资料, 试编制产品物量总指数产品名称工
26、业总产值( 万元) 个体物量指数( %) 基期报告期甲乙丙18001500800 18001000110105100解:产品物量总指数: =106.04%32、 某厂生产的三种产品的有关资料如下: 产品名称产量单位成本(元)计量单位基期报告期计量单位基期报告期甲乙丙万件万只万个100500150120500200元/件元/只元/个1545910557要求: (1)计算三种产品的单位成本指数以及由于单位成本变动使总成本变动的绝对额; (2)计算三种产品产量总指数以及由于产量变动而使总成本变动的绝对额; (3)利用指数体系分析说明总成本(相对程度和绝对额)变动的情况.(1)三种产品的单位成本指数:
27、 由于单位成本变动影响的总成本绝对额: =30100-26100=4000万元 (2)三种产品的产量总指数: 由于产量变动影响的总成本绝对额: =26100-25350=750万元 (3)总成本指数: 总成本变动的绝对额: =30100-25350=4750万元 指数体系:109.76%=96.04%114.29%4100=(-1900)+6000万元33、 根据5位同学西方经济学的学习时间与成绩分数计算出如下资料: n=5 =40 =310 2=370 2=20700 =2740 试: (1)编制以学习时间为自变量的直线回归方程; (2)计算学习时间和学习成绩之间的相关系数,并解释相关的密切程度和方向。 解:( 1) 设直线回归方程为yc=a+bx 则学习时间和学习成绩之间的直线回归方程为yc=20.40+5.20x ( 2) 学习时间与学习成绩之间的相关系数: =0.96 说明学习时间x和成绩y之间存在着高度正相关 关系。