收藏 分销(赏)

APD光电二极管综合实验.doc

上传人:xrp****65 文档编号:5972979 上传时间:2024-11-24 格式:DOC 页数:11 大小:1.30MB
下载 相关 举报
APD光电二极管综合实验.doc_第1页
第1页 / 共11页
APD光电二极管综合实验.doc_第2页
第2页 / 共11页
点击查看更多>>
资源描述
APD光电二极管实验仪实验指导书 APD光电二极管综合实验仪 GCAPD-B 实 验 指 导 书 (V1.0) 武汉光驰科技有限公司 WUHAN GUANGCHI TECHNOLOGY CO.,LTD 目 录 第一章 APD光电二极管综合实验仪说明 - 3 - 1、电子电路部分结构分布 - 3 - 2、光通路组件 - 4 - 第二章 APD光电二极管特性测试 - 5 - 1、APD光电二极管暗电流测试 - 7 - 2、APD光电二极管光电流测试 - 8 - 3、APD光电二极管伏安特性 - 8 - 4、APD光电二极管雪崩电压测试 - 9 - 5、APD光电二极管光照特性 - 9 - 6、APD光电二极管时间响应特性测试 - 10 - 7、APD光电二极管光谱特性测试 - 10 - - 2 - APD光电二极管实验仪实验指导书 第一章 APD光电二极管综合实验仪说明 一、产品介绍 雪崩光电二极管的特点是高速响应性和放大功能。雪崩光电二极管(APD)的基片材料可采用硅和锗等材料。其结构是在n型基片上制作p层,然后在配置上p+层。一般上部的电极制作成环状,这是考虑到能获得稳定的“雪崩”效应。外来的光线通过薄的p+层,然后被p层吸收,从而产生了电子和空穴。由于在p层上存在着105V/cm的电场,因此位于价带的电子被冲击离子化后,产生雪崩倍增效应,电子和空穴不断产生。 这种元件可以用作0.8m范围的光纤通信的受光装置和光磁盘的受光期间还,能够有效地处理微弱光线的问题,当量子效率为68%以上时,可得到大于300MHz的高速响应。工作电压小于180V时,则暗电流仅为0.3nA。采用锗的APD所使用的波长范围接近于1m,由于它专用于光纤通信,所以其响应速度高达600MHz以上,偏压30V以下时,可获得高于55%的量子效率。暗电流很大,为0.5uA左右。GCAPD-B型APD雪崩光电二极管综合实验仪主要研究APD光电二极管的基本特性,如光电流、暗电流、光照特性、光谱特性、伏安特性及时间相应特性等,以及这种光敏器件与其它光电器件的应用差别。 二、实验仪说明 1、电子电路部分结构分布 电子电路部分功能说明 (1)电压表:独立电压表,可切换三档,200mV,2V,20V,通过拨段开关进行调节,白色所指示的位置即为所对应的档位。 “+”“-”分别对应电压表的“正”“负”输入极。 (2)电流表:独立电流表,可切换四档,200uA,2mA,20mA,200mA通过拨段开关进行调节,白色所指示的位置即为所对应的档位。 “+”“-”分别对应电压表的“正”“负”输入极。 (3)照度计电源:红色为照度计电源正极,黑色为照度计电源负极。 (4)直流电源:0~200V可调,“0~200V”为直流电源的正极,另一端为负极。 (5)信号测试单元: TP1:与T1直接相连 TP2:与T2直接相连 TP :光脉冲调制信号测试端 注:信号测试单元的GND与直流电源0~200V不共地。 2、光通路组件 图1 光电二三极管光通路组件 功能说明: 分光镜:50%透过50%反射镜,将平行光一半给照度计探头,一半给等测光器件,实验测试方便简单,照度计可实时检测出等测器件所接收的光照度。 光器件输出端:红色——APD光电二极管“P”极 黑色——APD光电二极管“N”极 第二章 APD光电二极管特性测试 一、实验目的 1、学习掌握APD光电二极管的工作原理 2、学习掌握APD光电二极管的基本特性 3、掌握APD光电二极管特性测试方法 4、了解APD光电二极管的基本应用 二、实验内容 1、APD光电二极管暗电流测试实验 2、APD光电二极管光电流测试实验 3、APD光电二极管伏安特性测试实验 4、APD光电二极管雪崩电压测试实验 5、APD光电二极管光电特性测试实验 6、APD光电二极管时间响应特性测试实验 7、APD光电二极管光谱特性测试实验 三、实验仪器 1、光电探测综合实验仪 1个 2、光通路组件 1套 3、光照度计 1台 4、光敏电阻及封装组件 1套 5、2#迭插头对(红色,50cm) 10根 6、2#迭插头对(黑色,50cm) 10根 7、三相电源线 1根 8、实验指导书 1本 9、示波器 1台 四、实验原理 雪崩光电二极管APD—Avalanche Photodiode是具有内部增益的光检测器,它可以用来检测微弱光信号并获得较大的输出光电流。 雪崩光电二极管能够获得内部增益是基于碰撞电离效应。当PN结上加高的反向偏压时,耗尽层的电场很强,光生载流子经过时就会被电场加速,当电场强度足够高(约3x105V/cm)时,光生载流子获得很大的动能,它们在高速运动中与半导体晶格碰撞,使晶体中的原子电离,从而激发出新的电子一空穴对,这种现象称为碰撞电离。碰撞电离产生的电子一空穴对在强电场作用下同样又被加速,重复前一过程,这样多次碰撞电离的结果使载流子迅速增加,电流也迅速增大,这个物理过程称为雪崩倍增效应。 图6-1为APD的一种结构。外侧与电极接触的P区和N区都进行了重掺杂,分别以P+和N+表示;在I区和N+区中间是宽度较窄的另一层P区。APD工作在大的反偏压下,当反偏压加大到某一值后,耗尽层从N+-P结区一直扩展(或称拉通)到P+区,包括了中间的P层区和I区。图6-1的结构为拉通型APD的结构。从图中可以看到,电场在I区分布较弱,而在N+-P区分布较强,碰撞电离区即雪崩区就在N+-P区。尽管I区的电场比N+-P区低得多,但也足够高(可达2x104V/cm),可以保证载流子达到饱和漂移速度。当入射光照射时,由于雪崩区较窄,不能充分吸收光子,相当多的光子进入了I区。I区很宽,可以充分吸收光子,提高光电转换效率。我们把I区吸收光子产生的电子-空穴对称为初级电子-空穴对。在电场的作用下,初级光生电子从I区向雪崩区漂移,并在雪崩区产生雪崩倍增;而所有的初级空穴则直接被P+层吸收。在雪崩区通过碰撞电离产生的电子-空穴对称为二次电子-空穴对。可见,I区仍然作为吸收光信号的区域并产生初级光生电子-空穴对,此外它还具有分离初级电子和空穴的作用,初级电子在N+-P区通过碰撞电离形成更多的电子-空穴对,从而实现对初级光电流的放大作用。 图6-1 APD的结构及电场分布 碰撞电离产生的雪崩倍增过程本质上是统计性的,即为一个复杂的随机过程。每一个初级光生电子-空穴对在什么位置产生,在什么位置发生碰撞电离,总共碰撞出多少二次电子一空穴对,这些都是随机的。因此与PIN光电二极管相比,APD的特性较为复杂。 APD的雪崩倍增因子M定义为: M=IP/IP0 式中:IP 是APD的输出平均电流;IP0是平均初级光生电流。从定义可见,倍增因子是APD的电流增益系数。由于雪崩倍增过程是一个随机过程,因而倍增因子是在一个平均之上随机起伏的量,雪崩倍增因子M的定义应理解为统计平均倍增因子。M随反偏压的增大而增大,随W的增加按指数增长。 APD的噪声包括量子噪声、暗电流噪声、漏电流噪声、热噪声和附加的倍增噪声。倍增噪声是APD中的主要噪声。 倍增噪声的产生主要与两个过程有关,即光子被吸收产生初级电子-空穴对的随机性以及在增益区产生二次电子-空穴对的随机性。这两个过程都是不能准确测定的,因此APD倍增因子只能是一个统计平均的概念,表示为<M>,它是一个复杂的随机函数。 由于APD具有电流增益,所以APD的响度比PIN的响应度大大提高,有 R0=<M>(IP/P)=<M>(ηq/hf) 量子效率只与初级光生载流子数目有关,不涉及倍增问题,故量子效率值总是小于1。 APD的线性工作范围没有PIN宽,它适宜于检测微弱光信号。当光功率达到几uW以上时,输出电流和入射光功率之间的线性关系变坏,能够达到的最大倍增增益也降低了,即产生了饱和现象。 、 APD的这种非线性转换的原因与PIN类似,主要是器件上的偏压不能保持恒定。由于偏压降低,使得雪崩区变窄,倍增因子随之下降,这种影响比PIN的情况更明显。它使得数字信号脉冲幅度产生压缩,或使模拟信号产生波形畸变,应设法避免。 在低偏压下,APD没有倍增效应。当偏压升高时,产生倍增效应,输出信号电流增大。当反向偏压接近某一电压VB时,电流倍增最大,此时称APD被击穿,电压VB称作击穿电压。如果反偏压进一步提高,则雪崩击穿电流使器件对光生载流子变的越来越不敏感。因此APD的偏置电压接近击穿电压,一般在数十伏到数百伏。须注意的是击穿电压并非是APD的破坏电压,撤去该电压后APD仍能正常工作。 APD的暗电流有初级暗电流和倍增后的暗电流之分,它随倍增因子的增加而增加;此外还有漏电流,漏电流没有经过倍增。 APD的响应速度主要取决于载流子完成倍增过程所需要的时间,载流子越过耗尽层所需的渡越时间以及二极管结电容和负载电阻的RC时间常数等因素。而渡越时间的影响相对比较大,其余因素可通过改进结构设计使影响减至很小。 五、实验准备 1、实验之前,请仔细阅读光电探测综合实验仪说明,弄清实验箱各部分的功能及拨位开关的意义; 2、当电压表和电流表显示为“1_”是说明超过量程,应更换为合适量程。 3、连线之前保证电源关闭。 4、实验过程中,请勿同时拨开两种或两种以上的光源开关,这样会造成实验所测试的数据不准确。 六、实验步骤 1、APD光电二极管暗电流测试 实验装置原理框图如图6-2所示 图6-2 (1)组装好光通路组件,将照度计与照度计探头输出正负极对应相连(红为正极,黑为负极),将照度计电源线与面板上的照度计电源正负极对应相连(红为正极,黑为负极),将光源调制单元J4与光通路组件光源接口用彩排数据线相连。 (2)将将三掷开关BM2拨到“静态”,将拨位开关S1,S2,S3,S4,S5,S6,S7均拨下。 (3)“光照度调节”调到最小,连接好光照度计,直流电源调至最小,打开照度计,此时照度计的读数应为0。 (4)按图6-2所示的电路连接电路图,直流电源选择电源1,负载RL选择RL11=100K欧,电流表选择200uA档。 (5)打开电源开关,缓慢调节直流电源1,直到微安表显示有读数为止,记录此时电压表U和电流表的读数I.I即为APD光电二极管在U偏压下的暗电流。 (注:在测试暗电流时,应先将光电器件置于黑暗环境中30分钟以上,否则测试过程中电压表需一段时间后才可稳定) (6)实验完毕,直流电源调至最小,关闭电源,拆除所有连线。 2、APD光电二极管光电流测试 (1)组装好光通路组件,将照度计与照度计探头输出正负极对应相连(红为正极,黑为负极),将照度计电源线与面板上的照度计电源正负极对应相连(红为正极,黑为负极),将光源调制单元J4与光通路组件光源接口用彩排数据线相连。 (2)将将三掷开关BM2拨到“静态”,将拨位开关S1拨上,S2,S3,S4,S5,S6,S7均拨下。 (3)按图6-2所示的电路连接电路图,直流电源选择电源1,负载RL选择RL11=100K欧,电流表选择200uA档. (4)打开电源,缓慢调节光照度调节电位器,直到光照为300lx(约为环境光照),缓慢调节直流电源电位器,直到微安表显示有读数有较大变化为止,记录此时电压表U和电流表的读数I.I即为APD光电二极管在U偏压下的光电流. (5)实验完毕,将光照度调至最小,直流电源调至最小,关闭电源,拆除所有连线。 3、APD光电二极管伏安特性 (1)组装好光通路组件,将照度计与照度计探头输出正负极对应相连(红为正极,黑为负极),将照度计电源线与面板上的照度计电源正负极对应相连(红为正极,黑为负极),将光源调制单元J4与光通路组件光源接口用彩排数据线相连。 (2)将三掷开关BM2拨到“静态”,将拨位开关S1拨上,S2,S3,S4,S5,S6,S7均拨下。 (3)按图6-2所示的电路连接电路图,直流电源选择电源1,负载RL选择RL11=100K欧。 (3)打开电源顺时针调节照度调节旋钮,使照度值为200Lx,保持光照度不变,调节电源电压电位器,使反向偏压为0V、50V,100V、120V、130V、140V、150V、160V、170V、180V时的电流表读数,填入下表,关闭电源。 (注:在测试过程中应缓慢调节电位器,当反向偏置电压高于雪崩电压时,光生电流会迅速增加,电流表的读数会增加N个数量级,由于APD在高于雪崩电压的条件下工作时,PN结上的偏压很容易产生波动,影响到增益的稳定性,因此产生的光电流不稳定,属于正常现象,在记录结果时,取数量级数值即可。) (特殊说明:在实验过程中,请勿将APD光电二极管长期工作在雪崩电压以上,以免烧坏APD光电二极管,在工业上,APD光电二极管的工作电压略低于雪崩电压。) (6)根据上述实验结果,作出200lx光照度下的APD光电二极管伏安特性曲线。 偏压(V) 0 50 100 120 130 140 150 160 170 180 光电流I(μA) (注:由于APD雪崩光电二极管的个性差异,不同的APD光电二极管的雪崩电压有0~50V差异,测试的数据也有很大差异,属正常现象) 4、APD光电二极管雪崩电压测试 (1)根据实验3伏安特性的测试方法,重复实验3的实验步骤, 分别测出光照度在100Lx,300lx和500lx光照度时,反向偏压为0V、50V,100V、120V、130V、140V、150V、160V、170V、180V时的电流表读数,填入下表,关闭电源。 (2)根据上述实验结果,在同一坐标轴下作出100Lx,300lx和500lx光照度下的APD光电二极管伏安特性曲线,并进行分析,找出光电二极管的雪崩电压。 偏压(V) 0 50 100 120 130 140 150 160 170 180 光生电流1(μA) 光生电流2(μA) 光生电流3(μA) 5、APD光电二极管光照特性 实验装置原理框图如图6-2所示。 (1)组装好光通路组件,将照度计与照度计探头输出正负极对应相连(红为正极,黑为负极),将照度计电源线与面板上的照度计电源正负极对应相连(红为正极,黑为负极),将光源调制单元J4与光通路组件光源接口用彩排数据线相连。 (2)将三掷开关BM2拨到“静态”,将拨位开关S1拨上,S2,S3,S4,S5,S6,S7均拨下。 (3)按图6-2所示的电路连接电路图,直流电源选择电源1,负载RL选择RL11=100K欧。 (4)将“光照度调节”旋钮逆时针调节至最小值位置。打开电源,调节直流电源1电位器,直到电压表的显示值略高于实验4所测试的雪崩电压即可,保持电压不变,顺时针调节光照度,增大光照度值,分别记下不同照度下对应的光生电流值,填入下表。若电流表或照度计显示为“1_”时说明超出量程,应改为合适的量程再测试。 光照度(Lx) 0 100 300 500 700 900 光生电流(μA) (5)根据上面表中实验数据,在坐标轴中作出APD光电二极管的光照特性曲线,并进行分析. (6)实验完毕,将光照度调至最小,直流电源调至最小,关闭电源,拆除所有连线。 6、APD光电二极管时间响应特性测试 (1)组装好光通路组件,将照度计与照度计探头输出正负极对应相连(红为正极,黑为负极),将照度计电源线与面板上的照度计电源正负极对应相连(红为正极,黑为负极),将光源调制单元J4与光通路组件光源接口用彩排数据线相连。 (2)将三掷开关BM2拨到“脉冲”,将拨位开关S1拨上,S2,S3,S4,S5,S6,S7均拨下。 (3)按图6-3所示的电路连接电路图,直流电压源选用电源1,负载RL选择RL=1K欧. (4)示波器的测试点应为A点,为了测试方便,可把示波器的测试点使用迭插头对引至信号测试区的TP1和TP2。 图6-3 (5)打开电源,白光对应的发光二极管亮,其余的发光二极管不亮。用示波器的第一通道接TP和GND(即为输入的脉冲光信号),用示波器的第二通道接TP2和TP1。 (6)观察示波器两个通道信号,缓慢调节直流电源1直到示波器上观察到信号清晰为止,并作出实验记录(描绘出两个通道波形)。 (7)缓慢调节脉冲宽度调节,增大输入脉冲的脉冲信号的宽度,观察示波器两个通道信号的变化,并作出实验记录(描绘出两个通道的波形)并进行分析。 (8)实验完毕,将光照度调至最小,直流电源调至最小,关闭电源,拆除所有连线。 7、APD光电二极管光谱特性测试 当不同波长的入射光照到光电二极管上,光电二极管就有不同的灵敏度。本实验仪采用高亮度LED(白、红、橙、黄、绿、蓝、紫)作为光源,产生400~630nm离散光谱。 光谱响应度是光电探测器对单色光辐射的响应能力。定义为在波长为λ的单位入射辐射功率下,光电探测器输出的信号电压或电流信号。表达式如下: 或 式中,为波长为时的入射光功率;为光电探测器在入射光功率作用下的输出信号电压;则为输出用电流表示的输出信号电流。 本实验所采用的方法是基准探测器法,在相同光功率的辐射下,则有 式中,为基准探测器显示的电压值,K为基准电压的放大倍数,为基准探测器的响应度。取在测试过程中,取相同值,则实验所测测试的响应度大小由的大小确定.下图为基准探测器的光谱响应曲线。 图6-4 基准探测器的光谱响应曲线 (1)组装好光通路组件,将照度计与照度计探头输出正负极对应相连(红为正极,黑为负极),将照度计电源线与面板上的照度计电源正负极对应相连(红为正极,黑为负极),将光源调制单元J4与光通路组件光源接口用彩排数据线相连。 (2)将将三掷开关BM2拨到“静态”,将拨位开关S1,S2,S4,S3,S5,S6,S7均拨下。 (3)按图6-2所示的电路连接电路图,直流电源选择电源1,负载RL选择RL11=100K欧。 (4)打开电源,缓慢调节直流电源1,直到电压表的读数略高APD光电二极管的雪崩电压为止。 (5)S2拨上,缓慢调节电位器直到照度计显示为E=10lx,将电压表测试所得的数据填入下表,再将S2拨下; (6)重复操作步骤(5),分别测试出橙,黄,绿,蓝,紫在光照度E下电流表的读数,填入下表。 波长(nm) 红(630) 橙(605) 黄 (585) 绿(520) 蓝(460) 紫(400) 基准响应度 0.65 0.61 0.56 0.42 0.25 0.06 光电流 响应度 (7)根据所测试得到的数据,做出APD光电二极管的光谱特性曲线。 (8)实验完毕,将光照度调至最小,直流电源调至最小,关闭电源,拆除所有连线。 - 11 -
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 百科休闲 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服