资源描述
第九章 不等式与不等式组复习教案
一、教学内容:不等式与不等式组 二、教学目标
1、知识与技能:
能够根据具体问题中的大小关系了解不等式的意义,并探索不等式的基本性质。
会解简单的一元一次不等式,并能在数轴上表示出解集。会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集。
2、方法与过程:
能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单的实际问题。 3、情感、态度与价值观:
会运用数形结合、分类等数学思想方法解决问题,会“逆向”地思考问题,灵活的解答问题. 三、教学重点:
能熟练的解一元一次不等式与一元一次不等式组 四、教学难点:
能熟练的解一元一次不等式(组)并体会数形结合、分类讨论等数学思想。
五、教学过程 (一)知识梳理 1.知识结构图
2.知识点回顾 (1)、不等式
用不等号连接起来的式子叫做不等式.
常见的不等号有五种: “≠”、 “>” 、 “<” 、 “≥”、 “≤”. (2)、不等式的解与解集
不等式的解:使不等式成立的未知数的值,叫做不等式的解.
不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.
不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。 说明:不等式的解与一元一次方程的解是有区别的,不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值. (3)、不等式的基本性质 A、不等式的两边都加上(或减去)同一个数或同一个整式.不等号的方向不变.
如果a>b,则a+c>b+c,a-c>b-c
B、不等式的两边都乘以(或除以)同一个正数,不等号的方向不变. 如果a>b,并且c>0,那么则ac>bc(或a/c>b/c)
C、不等式的两边都乘以(或除以)同一个负数,不等号的方向改变. 如果a>b,并且c<0,那么则ac<bc(或a/c<b/c)
(4) 、一元一次不等式
只含有一个未知数,且未知数的次数是1.系数不等于0的不等式叫做一元一次不等式.
注:一元一次不等式的一般形式是ax+b>O或ax+b<O(a≠O,a,b为已知数). (5)、解一元一次不等式的一般步骤 解一元一次不等式的一般步骤:
(1)去分母;(2)去括号;(3)移项; (4)合并同类项;(5)化系数为1. 说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方. (6).一元一次不等式组
含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组.
说明:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多. (7).一元一次不等式组的解集
一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.
一元一次不等式组的解集通常利用数轴来确定.
(1)分别求出不等式组中各个不等式的解集;
(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集. 3.课堂
3、求不等式(组)的特殊解:
(1)求不等式 3x+1≥4x-5的正整数解
解:移项,得:3x-4x≥-5-1 合并同类项,得:-x≥-6 系数化为1,得:x≤6
所以不等式 的正整数解为:1、2、3、4、5、6
4.课堂小结
1.在判断不等式成立与否或由不等式变形求某些字母的范围时,要认真观察不等式的形式与不等号方向。
2.解一元一次不等式的步骤与解一元一次方程的步骤大致相同,应注意的是:①等式两边所乘以(或除以)的数的正负,并根据不同情况灵活运用其性质。②不等式组解集的确定方法。③一元一次不等式(组)常与分式、根式、方程、函数等知识联系,解决综合性问题。 3.求不等式(组)的特殊解
不等式(组)的解往往是无数多个,但有时解在某些范围内是有限的,如整数解、非负整数解,要求这些特殊解,首先是确定不等式(组)的解集,然后再找到相应的答案。在这类题目中,要注意对数形结合思想的应用。 4.确定不等式(组)中字母的取值范围
已知求不等式(组)的解集,确定不等式(组)中字母的取值范围,有以下几种方法:(1)逆用不等式(组)的解集;(2)分类讨论确定;(3)借助数轴确定。
5.作业布置:
教材总复习:分别为7、8、9题。
6.板书设计:
7、课后反思:
展开阅读全文