资源描述
圆锥曲线
一、基本知识
1.椭圆
(1)定义
定义1:平面内一个动点到两个定点F1、F2的距离之和等于常数(大于|F1F2|),这个动点的轨迹叫椭圆(这两个定点叫焦点).
定义2:点M与一个定点的距离和它到一条定直线的距离的比是常
(2)图形和标准方程
(3)几何性质
2.双曲线
(1)定义
定义1:平面内与两个定点F1、F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线(这两个定点叫双曲线的焦点).
定义2:动点到一定点的距离与它到一条定直线的距离之比是常数e(e>1)时,这个动点的轨迹是双曲线(这定点叫做双曲线的焦点).
(2)图形和标准方程
图8-3的标准方程为:
图8-4的标准方程为:
(3)几何性质
3.抛物线
(1)定义
平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.
(2)抛物线的标准方程,类型及几何性质,见下表:
①抛物线的标准方程有以下特点:都以原点为顶点,以一条坐标轴为对称轴;方程不同,开口方向不同;焦点在对称轴上,顶点到焦点的距离等于顶点到准线距离.
②p的几何意义:焦点F到准线l的距离.
焦点弦长公式:|AB|=p+x1+x2
④关于抛物线焦点弦的几个结论:
设AB为过抛物线焦点的弦,A(,直线AB的倾斜角为,则
ⅰ); ⅱ) ⅲ)以AB为直径的圆与准线相切 ⅳ)
⑤设F是抛物线的焦点,M是抛物线上任一点,则
⑥过抛物线的焦点F作垂直于对称轴的直线,交抛物线于A、B两点,则线段AB称为抛物线的通径,其长为
4.圆锥曲线(椭圆、双曲线、抛物线统称圆锥曲线)的统一定义
与一定点的距离和一条定直线的距离的比等于常数的点的轨迹叫做圆锥曲线,定点叫做焦点,定直线叫做准线、常数叫做离心率,用e表示,当0<e<1时,是椭圆,当e>1时,是双曲线,当e=1时,是抛物线.
二、利用平移化简二元二次方程
1.定义
缺xy项的二元二次方程Ax2+Cy2+Dx+Ey+F=0(A、C不同时为0)※,通过配方和平移,化为圆型或椭圆型或双曲线型或抛物线型方程的标准形式的过程,称为利用平移化简二元二次方程.
A=C是方程※为圆的方程的必要条件.
A与C同号是方程※为椭圆的方程的必要条件.
A与C异号是方程※为双曲线的方程的必要条件.
A与C中仅有一个为0是方程※为抛物线方程的必要条件.
2.对于缺xy项的二元二次方程:
Ax2+Cy2+Dx+Ey+F=0(A,C不同时为0)利用平移变换,可把圆锥曲线的一般方程化为标准方程,其方法有:①待定系数法;②配方法.
中心O′(h,k)
中心O′(h,k)
抛物线:对称轴平行于x轴的抛物线方程为
(y-k)2=2p(x-h)或(y-k)2=-2p(x-h),
顶点O′(h,k).
对称轴平行于y轴的抛物线方程为:
(x-h)2=2p(y-k)或(x-h)2=-2p(y-k)
顶点O′(h,k).
以上方程对应的曲线按向量a=(-h,-k)平移,就可将其方程化为圆锥曲线的标准方程的形式.
二、易错点
1.圆锥曲线的两个定义:
(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F,F的距离的和等于常数,且此常数一定要大于,当常数等于时,轨迹是线段FF,当常数小于时,无轨迹;双曲线中,与两定点F,F的距离的差的绝对值等于常数,且此常数一定要小于|FF|,定义中的“绝对值”与<|FF|不可忽视。若=|FF|,则轨迹是以F,F为端点的两条射线,若﹥|FF|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
如(1)已知定点,在满足下列条件的平面上动点P的轨迹中是椭圆的是 A. B. C. D.
(2)方程表示的曲线是_____
(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率。圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。如
(08宣武一模) 已知P为抛物线上的动点,点P在x轴上的射影为M,点A的坐标是,则的最小值是 _____
2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):
(1)椭圆:焦点在轴上时()(参数方程,其中为参数),焦点在轴上时=1()。方程表示椭圆的充要条件是什么?(A,B,同正,A≠B)。如(1)已知方程表示椭圆,则的取值范围为_____________;(2)若,且,则的最大值是________,的最小值是_________.
(2)双曲线:焦点在轴上: =1,焦点在轴上:=1()。方程表示双曲线的充要条件是________________。如(1)双曲线的离心率等于,且与椭圆有公共焦点,则该双曲线的方程_________________;
(2)设中心在坐标原点,焦点、在坐标轴上,离心率的双曲线C过点,则C的方程为_____________________.
(3)抛物线:开口向右时,开口向左时,开口向上时,开口向下时。
3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断)如:焦点为___________。
(1)椭圆:由,分母的大小决定,焦点在分母大的坐标轴上。如已知方程表示焦点在y轴上的椭圆,则m的取值范围是_____________________。
(2)双曲线:由,项系数的正负决定,焦点在系数为正的坐标轴上;
(3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。
特别提醒:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F,F的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向;
(2)在椭圆中,最大,,在双曲线中,最大,。
(3)不要思维定势认为圆锥曲线方程都是标准方程
4.圆锥曲线的几何性质:
(1)椭圆(以()为例):①范围:;②焦点:两个焦点;
③对称性:两条对称轴,一个对称中心(0,0),四个顶点,其中长轴长为2,短轴长为2;④准线:两条准线; ⑤离心率:,椭圆,越小,椭圆越圆;越大,椭圆越扁。如(1)若椭圆的离心率,则的值是________________;
(2)以椭圆上一点和椭圆两焦点为顶点的三角形的面积最大值为1时,则椭圆长轴的最小值为____________;
(2)双曲线(以()为例):①范围:或;
②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),两个顶点,其中实轴长为2,虚轴长为2,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为;④准线:两条准线; ⑤离心率:,双曲线,等轴双曲线,越小,开口越小,越大,开口越大;⑥两条渐近线:。⑤双曲线焦点到渐近线的距离是,垂足恰好在准线上
如(1)双曲线的渐近线方程是,则该双曲线的离心率等于____________;
(2)双曲线的离心率为,则= _;
(3)设双曲线(a>0,b>0)中,离心率e∈[,2],则两条渐近线夹角θ的取值范围
是________;
(3)抛物线(以为例):①范围:;②焦点:一个焦点,其中的几何意义是:焦点到准线的距离;③对称性:一条对称轴,没有对称中心,只有一个顶点(0,0);④准线:一条准线;⑤离心率:,抛物线。如设,则抛物线的焦点坐标为__________;
5、点和椭圆()的关系:
(1)点在椭圆外;(2)点在椭圆上=1;
(3)点在椭圆内
6.直线与圆锥曲线的位置关系:
(1)相交:直线与椭圆相交; 直线与双曲线相交,但直线与双曲线相交不一定有,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故是直线与双曲线相交的充分条件,但不是必要条件;直线与抛物线相交,但直线与抛物线相交不一定有,当直线与抛物线的对称轴平行时,直线与抛物线相交且只有一个交点,故也仅是直线与抛物线相交的充分条件,但不是必要条件。
如(1)若直线y=kx+2与双曲线x2-y2=6的右支有两个不同的交点,则k的取值范围是___________;
(2) 直线y―kx―1=0与椭圆恒有公共点,则m的取值范围是______________;
(3) 过双曲线的右焦点直线交双曲线于A、B两点,若│AB︱=4,则这样的直线有___条。
(2)相切:直线与椭圆相切;直线与双曲线相切;直线与抛物线相切;
(3)相离:直线与椭圆相离;直线与双曲线相离;直线与抛物线相离。
特别提醒:
(1)直线与双曲线、抛物线只有一个公共点时的位置关系有两种情形:相切和相交。如果直线与双曲线的渐近线平行时,直线与双曲线相交,但只有一个交点;如果直线与抛物线的轴平行时,直线与抛物线相交,也只有一个交点;
(2)过双曲线=1外一点的直线与双曲线只有一个公共点的情况如下:
①P点在两条渐近线之间且不含双曲线的区域内时,有两条与渐近线平行的直线和分别与双曲线两支相切的两条切线,共四条;
②P点在两条渐近线之间且包含双曲线的区域内时,有两条与渐近线平行的直线和只与双曲线一支相切的两条切线,共四条;
③P在两条渐近线上但非原点,只有两条:一条是与另一渐近线平行的直线,一条是切线;
④P为原点时不存在这样的直线;
(3)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条平行于对称轴的直线。
如(1)过点作直线与抛物线只有一个公共点,这样的直线有____________;
(2) 过点(0,2)与双曲线有且仅有一个公共点的直线的斜率的取值范围为_________;
(3) 过双曲线的右焦点作直线交双曲线于A、B两点,若4,则满足条件的直线有____条;
(4)对于抛物线C:,我们称满足的点在抛物线的内部,若点在抛物线的内部,则直线:与抛物线C的位置关系是_______;
(5)过抛物线的焦点作一直线交抛物线于P、Q两点,若线段PF与FQ的长分别是、,则_______;
(6)设双曲线的右焦点为,右准线为,设某直线交其左支、右支和右准线分别于,则和的大小关系为___________(填大于、小于或等于) ;
(7)求椭圆上的点到直线的最短距离________________;
(8)直线与双曲线交于、两点。①当为何值时,、分别在双曲线的两支上?②当为何值时,以AB为直径的圆过坐标原点?(答:①____________;②____________);
7、焦半径(圆锥曲线上的点P到焦点F的距离)的计算方法:利用圆锥曲线的第二定义,转化到相应准线的距离,即焦半径,其中表示P到与F所对应的准线的距离。
如(1)已知椭圆上一点P到椭圆左焦点的距离为3,则点P到右准线的距离为_____________;
(2)已知抛物线方程为,若抛物线上一点到轴的距离等于5,则它到抛物线的焦点的距离等于____;
(3)若该抛物线上的点到焦点的距离是4,则点的坐标为______________;
(4)点P在椭圆上,它到左焦点的距离是它到右焦点距离的两倍,则点P的横坐标为__________;
(5)抛物线上的两点A、B到焦点的距离和是5,则线段AB的中点到轴的距离为___________;
(6)椭圆内有一点,F为右焦点,在椭圆上有一点M,使 之值最小,则点M的坐标为_______________;
8、焦点三角形(椭圆或双曲线上的一点与两焦点所构成的三角形)问题:常利用第一定义和正弦、余弦定理求解。设椭圆或双曲线上的一点到两焦点的距离分别为,焦点的面积为,则在椭圆中, ①=,且当即为短轴端点时,最大为=;
②,当即为短轴端点时,的最大值为bc;对于双曲线的焦点三角形有:①;②。
如(1)短轴长为,离心率的椭圆的两焦点为、,过作直线交椭圆于A、B两点,则的周长为___________;
(2)设P是等轴双曲线右支上一点,F1、F2是左右焦点,若,|PF1|=6,则该双曲线的方程为 ___;
(3)椭圆的焦点为F1、F2,点P为椭圆上的动点,当·<0时,点P的横坐标的取值范围是 _______;
(4)双曲线的虚轴长为4,离心率e=,F1、F2是它的左右焦点,若过F1的直线与双曲线的左支交于A、B两点,且是与等差中项,则=__________;
(5)已知双曲线的离心率为2,F1、F2是左右焦点,P为双曲线上一点,且,.求该双曲线的标准方程____________________;
9、圆锥曲线中与焦点弦有关的一些几何图形的性质:
(1)抛物线以过焦点的弦为直径的圆和准线相切;椭圆以过焦点的弦为直径的圆和相应准线相离,双曲线以过焦点的弦为直径的圆和相应准线相交
(2)设AB为焦点弦, M为与相应准线与x轴的交点,则∠AMF=∠BMF;
(3)抛物线设AB为焦点弦,A、B在准线上的射影分别为A,B,若P为AB的中点,则PA⊥PB;
(4)抛物线(椭圆,双曲线)设AB为焦点弦若AO的延长线交准线于C,则BC平行于x轴,反之,若过B点平行于x轴的直线交准线于C点,则A,O,C三点共线。
10、弦长公式:若直线与圆锥曲线相交于两点A、B,且分别为A、B的横坐标,则=,若分别为A、B的纵坐标,则=,若弦AB所在直线方程设为,则=。特别地,焦点弦(过焦点的弦):焦点弦的弦长的计算,一般不用弦长公式计算,而是将焦点弦转化为两条焦半径之和后,利用第二定义求解。
如(1)过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1),B(x2,y2)两点,若x1+x2=6,那么|AB|等于_______;
(2)过抛物线焦点的直线交抛物线于A、B两点,已知|AB|=10,O为坐标原点,则ΔABC重心的横坐标为_______;
11、圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解。在椭圆中,以为中点的弦所在直线的斜率k=-;在双曲线中,以为中点的弦所在直线的斜率k=;在抛物线中,以为中点的弦所在直线的斜率k=。
如(1)如果椭圆弦被点A(4,2)平分,那么这条弦所在的直线方程是 ;
(2)已知直线y=-x+1与椭圆相交于A、B两点,且线段AB的中点在直线L:x-2y=0上,则此椭圆的离心率为_______;
(3)试确定m的取值范围(_________),使得椭圆上有不同的两点关于直线对称,;
特别提醒:因为是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验!
12.你了解下列结论吗?
(1)双曲线的渐近线方程为;
(2)以为渐近线(即与双曲线共渐近线)的双曲线方程为为参数,≠0)。如与双曲线有共同的渐近线,且过点的双曲线方程为________________ ;
(3)中心在原点,坐标轴为对称轴的椭圆、双曲线方程可设为;
(4)椭圆、双曲线的通径(过焦点且垂直于对称轴的弦)为,焦准距(焦点到相应准线的距离)为,抛物线的通径为,焦准距为;
(5)通径是所有焦点弦(过焦点的弦)中最短的弦;
(6)若抛物线的焦点弦为AB,,则①;②
(7)若OA、OB是过抛物线顶点O的两条互相垂直的弦,则直线AB恒经过定点
13.动点轨迹方程:
(1)求轨迹方程的步骤:建系、设点、列式、化简、确定点的范围;
(2)求轨迹方程的常用方法:
①直接法:直接利用条件建立之间的关系;如已知动点P到定点F(1,0)和直线的距离之和等于4,求P的轨迹方程____________________________________________;
②待定系数法:已知所求曲线的类型,求曲线方程――先根据条件设出所求曲线的方程,再由条件确定其待定系数。如抛物线顶点在原点,坐标轴为对称轴,过点,抛物线方程为______________________;
③定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程;
如(1)由动点P向圆作两条切线PA、PB,切点分别为A、B,∠APB=600,则动点P的轨迹方程为 ;
(2)点M与点F(4,0)的距离比它到直线的距离小于1,则点M的轨迹方程是_______________;
(3) 一动圆与两圆⊙M:和⊙N:都外切,则动圆圆心的轨迹为 ___;
(4) (08东城一模) 已知定圆:,圆心为,动圆过点且和圆相切,动圆的圆心的轨迹记为.求曲线的方程_____________________________;
④代入转移法:动点依赖于另一动点的变化而变化,并且又在某已知曲线上,则可先用的代数式表示,再将代入已知曲线得要求的轨迹方程。
如周长16, ,动点P是其重心,当运动时,则P的轨迹方程为__________;
⑤参数法:当动点坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程,引入n个参量 需要n+ 1个等式 ,等式由几何条件坐标化得来 注意参量得范围,
如(1)AB是圆O的直径,且|AB|=2a,M为圆上一动点,作MN⊥AB,垂足为N,在OM上取点,使,求点的轨迹_________________________;
(2)若点在圆上运动,则点的轨迹方程是_____________________;
(3)过抛物线的焦点F作直线交抛物线于A、B两点,则弦AB的中点M的轨迹方程是____________;
(4) (08海淀一模)已知点分别是射线,上的动点,为坐标原点,且 的面积为定值2.求线段中点的轨迹的方程________________________________;
注意:①如果问题中涉及到平面向量知识,那么应从已知向量的特点出发,考虑选择向量的几何形式进行转化,还是选择向量的代数形式进行转化。
如已知椭圆的左、右焦点分别是F1(-c,0)、F2(c,0),Q是椭圆外的动点,满足点P是线段F1Q与该椭圆的交点,点T在线段F2Q上,并且满足(1)设为点P的横坐标,证明;(2)求点T的轨迹C的方程;(3)试问:在点T的轨迹C上,是否存在点M,使△F1MF2的面积S=若存在,求∠F1MF2的正切值;若不存在,请说明理由. (答:(1)略;(2);(3)当时不存在;当时存在,此时∠F1MF2=2)
②曲线与曲线方程、轨迹与轨迹方程是两个不同的概念,寻求轨迹或轨迹方程时应注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响.
③在与圆锥曲线相关的综合题中,常借助于“平面几何性质”坐标化(三点共线转化为斜率相等)、化解析几何问题为代数问题(方程与函数)、“分类讨论思想”化整为零分化处理、“求值构造等式、求变量范围构造不等关系”等等.
④如果在一条直线上出现“三个或三个以上的点”,那么可选择应用“斜率或向量”为桥梁转化.
14、解析几何与向量综合时可能出现的向量内容:
(1) 给出直线的方向向量或;
(2)给出与相交,等于已知过的中点;
(3)给出,等于已知是的中点;
(4)给出,等于已知与的中点三点共线;
(5) 给出以下情形之一:①;②存在实数;③若存在实数
,等于已知三点共线.
(6) 给出,等于已知是的定比分点,为定比,即
(7) 给出,等于已知,即是直角,给出,等于已知是钝角, 给出,等于已知是锐角,
(8)给出,等于已知是的平分线/
(9)在平行四边形中,给出,等于已知是菱形;
(10) 在平行四边形中,给出,等于已知是矩形;
(11)在中,给出,等于已知是的外心(三角形外接圆的圆心,三角形的外心是三角形三边垂直平分线的交点);
(12) 在中,给出,等于已知是的重心(三角形的重心是三角形三条中线的交点);
(13)在中,给出,等于已知是的垂心(三角形的垂心是三角形三条高的交点);
(14)在中,给出等于已知通过的内心;
(15)在中,给出等于已知是的内心(三角形内切圆的圆心,三角形的内心是三角形三条角平分线的交点);
(16) 在中,给出,等于已知是中边的中线;
15.圆锥曲线最值,定值,定点问题
基本方法:拿到表达式或和问题等价的代数形式
(西城)已知定点及椭圆,过点的动直线与椭圆相交于两点.
(Ⅰ)若线段中点的横坐标是,求直线的方程;
(Ⅱ)在轴上是否存在点,使为常数?若存在,求出点的坐标;若不存在,请说明理由.
(海淀文科)已知椭圆的中心是坐标原点,它的短轴长为,右焦点为,右准线与轴相交于点,,过点的直线与椭圆相交于两点, 点和点在上,且轴.
(I) 求椭圆的方程及离心率;
(II)当时,求直线的方程;
(III)求证:直线经过线段的中点.
16.解析几何中求变量的范围问题:
基本方法:一般情况下最终都转化成方程是否有解或转化成求函数的值域问题.或转化为解不等式
例(08海淀一模)直线l过抛物线的焦点F,交抛物线于A,B两点,且点A在x轴上方,若直线l的倾斜角, 则|FA|的取值范围是( )
(A)、 (B)、 (C)、 D、
例已知椭圆W的中心在原点,焦点在轴上,离心率为,两条准线间的距离为6. 椭圆W的左焦点为,过左准线与轴的交点任作一条斜率不为零的直线与椭圆W交于不同的两点、,点关于轴的对称点为.(Ⅰ)求椭圆W的方程;(Ⅱ)求证: ();(Ⅲ)求面积的最大值.
例.椭圆方程为=1是否存在直线,使与椭圆交于不同的两点M、N,且线段MN恰被直线x=-平分。若存在,求的倾斜角的范围;若不存在,请说明理由。
例.已知椭圆的左焦点为F,O为坐标原点.(I)求过点O、F,并且与椭圆的左准线相切的圆的方程;
(II)设过点F且不与坐标轴垂直的直线交椭圆于A、B两点,
线段AB的垂直平分线与轴交于点G,求点G横坐标的取值范围.
例、给定抛物线,F是C的焦点,过点F的直线l与C相交于A、B两点,记O 为坐标原点.
(1)求的值;
(2)设时,求的取值范围.
17.结合定义解题
(西城)已知两点,,若抛物线上存在点使为等边三角形,则_________
(东城)已知双曲线的左、右焦点分别为,若在双曲线的右支上存在一点,使得,则双曲线的离心率的取值范围为 .
(宣武) 已知P为抛物线上的动点,点P在x轴上的射影为M,点A的坐标是,则的最小值是 ( )
A 8 B C 10 D
(朝阳)已知双曲线的左、右焦点分别为、,抛物线的顶点在原点,它的准线与双曲线的左准线重合,若双曲线与抛物线的交点满足,则双曲线的离心率为
A. B. C. D.
三、练习
1.(2009宁夏海南卷理)双曲线-=1的焦点到渐近线的距离为( A )
(A) (B)2 (C) (D)1
2.(2009湖北卷文)已知双曲线(b>0)的焦点,则b=( C )
A.3 B. C. D.
3.(2009全国卷Ⅰ理)设双曲线(a>0,b>0)的渐近线与抛物线y=x2 +1相切,则该双曲线的离心率等于( C )
(A) (B)2 (C) (D)
4.(2009全国卷Ⅰ理)已知椭圆的右焦点为,右准线为,点,线段交于点,若,则=( A )
(A). (B). 2 (C). (D). 3
5.(2009浙江理)过双曲线的右顶点作斜率为的直线,该直线与双曲线的两条渐近线的交点分别为.若,则双曲线的离心率是 ( C ) w.w.w.k.s.5.u.c.o.m
A. B. C. D.
6.(2009北京理)点在直线上,若存在过的直线交抛物线于两点,且,则称点为“点”,那么下列结论中正确的是 ( A )
A.直线上的所有点都是“点”
B.直线上仅有有限个点是“点”
C.直线上的所有点都不是“点”
D.直线上有无穷多个点(点不是所有的点)是“点”
7.(2009山东卷理)设双曲线的一条渐近线与抛物线y=x+1 只有一个公共点,则双曲线的离心率为( D ).
A. B. 5 C. D.
8.(2009山东卷文)设斜率为2的直线过抛物线的焦点F,且和轴交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线方程为( B ).
A. B. C. D.
9.(2009全国卷Ⅱ文)双曲线的渐近线与圆相切,则r=( A )
(A) (B)2 (C)3 (D)6
10.(2009全国卷Ⅱ文)已知直线与抛物线C:相交A、B两点,F为C的焦点。若,则k=( D )
(A) (B) (C) (D)
11.(2009江西卷文)设和为双曲线()的两个焦点, 若,是正三角形的三个顶点,则双曲线的离心率为
A. B. C. D.3
12.(2009湖北卷理)已知双曲线的准线过椭圆的焦点,则直线与椭圆至多有一个交点的充要条件是( A )
A. B.
C. D.
13.(2009四川卷文)已知双曲线的左、右焦点分别是、,其一条渐近线方程为,点
在双曲线上.则·=( C )
A. -12 B. -2 C. 0 D. 4
14.(2009陕西卷文)“”是“方程”表示焦点在y轴上的椭圆”的
(A)充分而不必要条件 (B)必要而不充分条件
(C)充要条件 (D) 既不充分也不必要条件
15.(2009全国卷Ⅰ文)已知椭圆的右焦点为F,右准线,点,线段AF交C于点B。若,则=( A )
(A) (B) 2 (C) (D) 3
16、(2009天津卷理)设抛物线=2x的焦点为F,过点M(,0)的直线与抛物线相交于A,B两点,与抛物线的准线相交于C,=2,则BCF与ACF的面积之比=( A ) (A) (B) (C) (D)
17.(2009四川卷理)已知直线和直线,抛物线上一动点到直线和直线的距离之和的最小值是( A )
A.2 B.3 C. D.
18.(2009重庆卷理)已知以为周期的函数,其中。若方程恰有5个实数解,则的取值范围为( B )
A. B. C. D.
19.(2009北京文)椭圆的焦点为,点P在椭圆上,若,则 ;的大小为 .
20.(2009北京理)设是偶函数,若曲线在点处的切线的斜率为1,则该曲线在处的切线的斜率为_________.
21.(2009广东卷理)巳知椭圆的中心在坐标原点,长轴在轴上,离心率为,且上一点到的两个焦点的距离之和为12,则椭圆的方程为 .
22.(2009湖南卷文)过双曲线C:的一个焦点作圆的两条切线,
切点分别为A,B,若(O是坐标原点),则双曲线线C的离心率为 2 .
23.(2009福建卷理)过抛物线的焦点F作倾斜角为的直线交抛物线于A、B两点,若线段AB的长为8,则________________
20.(2009宁夏海南卷文)已知抛物线C的顶点坐标为原点,焦点在x轴上,直线y=x与抛物线C交于A,B两点,若为的中点,则抛物线C的方程为 。
24.(2009湖南卷理)已知以双曲线C的两个焦点及虚轴的两个端点为原点的四边形中,有一个内角为60 ,则双曲线C的离心率为
25.(2009年上海卷理)已知、是椭圆(>>0)的两个焦点,为椭圆上一点,且.若的面积为9,则=____________.
26.(2009辽宁卷理)以知F是双曲线的左焦点,是双曲线右支上的动点,则的最小值为 。
27.(2009重庆卷文)已知椭圆的左、右焦点分别为,若椭圆上存在一点使,则该椭圆的离心率的取值范围为 .
28.若方程的系数可以从这个数中任取个不同的数而得到,则这样的方程表示焦点在轴上的椭圆的概率是___________.(结果用数值表示)
29.已知AB是椭圆的长轴,若把该长轴等分,过每个等分点作AB的垂线,依次交椭圆的上半部分于点,设左焦点为,则
30.(2009北京文)(本小题共14分)w.w.w.k.s.5.u.c.o.m
已知双曲线的离心率为,右准线方程为。
(Ⅰ)求双曲线C的方程;(Ⅱ)已知直线与双曲线C交于不同的两点A,B,且线段AB的中点在圆上,求m的值.
(Ⅰ)由题意,得,解得,
∴,∴所求双曲线的方程为.
(Ⅱ)设A、B两点的坐标分别为,线段AB的中点为,
由得(判别式),
∴,
∵点在圆上,
∴,∴.
31.(2009江西卷理)(本小题满分12分)
已知点为双曲线(为正常数)上任一点,为双曲线的右焦点,过作右准线的垂线,垂足为,连接并延长交轴于. w.w.w.k.s.5.u.c.o.m
(1) 求线段的中点的轨迹的方程;
(2) 设轨迹与轴交于两点,在上任取一点,直线分别交轴于两点.求证:以为直径的圆过两定点.
解: (1) 由已知得,则直线的方程为:,
令得,即,
设,则,即代入得:,
即的轨迹的方程为. w.w.w.k.s.5.u.c.o.m
(2) 在中令得,则不妨设,
于是直线的方程为:,直线的方程为:,
则,
则以为直径的圆的方程为: ,
令得:,而在上,则,
于是,即以为直径的圆过两定点.
32.(2009天津卷文)(本小题满分14分)
已知椭圆()的两个焦点分别为,过点的直线与椭圆相交于点A,B两点,且
(Ⅰ求椭圆的离心率
(Ⅱ)直线AB的斜率;
(Ⅲ)设点C与点A关于坐标原点对称,直线上有一点H(m,n)()在的外接圆上,求的值。
【答案】(1)(2)(3)
【解析】 (1)解:由,得,从而
,整理得,故离心率
(2)解:由(1)知,,所以椭圆的方程可以写为
设直线AB的方程为即
由已知设则它们的坐标满足方程组 w.w.w.k.s.5.u.c.o.m
消去y整理,得
依题意,
而,有题设知,点B为线段AE的中点,所以
联立三式,解得,将结果代入韦达定理中解得
(3)由(2)知,,当时,得A由已知得
线段的垂直平分线l的方程为直线l与x轴的交点是的外接圆的圆心,因此外接圆的方程为
直线的方程为,于是点满足方程组由,解得,故
当时,同理可得
33.(2009四川卷文)(本小题满分12分)
已知椭圆的左、右焦点分别为,离心率,右准线方程为。
(I)求椭圆的标准方程;
(II)过点的直线与该椭圆交于两点,且,求直线的方程。
【解析】(I)由已知得,解得
∴
∴ 所求椭圆的方程为 …………………………………4分
(II)由(I)得、
①若直线的斜率不存在,则直线的方程为,由得
设、,
∴ ,这与已知相矛盾。
②若直线的斜率存在,设直线直线的斜率为,则直线的方程为,
设、,
联立,消元得
∴ ,
∴ , w.w.w.k.s.5.u.c.o.m
又∵
∴
∴
化简得
解得
∴
∴ 所求直线的方程为 …………………………………12分
34.(2009全国卷Ⅱ理)(本小题满分12分)
已知椭圆的离心率为,过右焦点F的直线与相交于、两点,当的斜率为1时,坐标原点到的距离为
(I)求,的值;
(II)上是否存在点P,使得当绕F转到某一位置时,有成立?
若存在,求出所有的P的坐标与的方程;若不存在,说明理由。
解:(I)设,直线,由坐标原点到的距离为
则,解得 .又.
(II)由(I)知椭圆的方程为.设、
由题意知的斜率为一定不为0,故不妨设
代入椭圆的方程中整理得,显然。
由韦达定理有:........①
.假设存在点P,使成立,则其充要条件为:
点,点P在椭圆上,即。
整理得。
又在椭圆上,即.
故................................②
将及①代入②解得
,=,即.
当;
当.
35.(2009宁夏海南卷理)(本小题满分12分)
已知椭圆C的中心为直角坐标系xOy的原点,焦点在s轴上,它的一个顶点到两个焦点的距离分别是7和1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若P为椭圆C上的动点,M为过P且垂直于x轴的直线上的点,=λ,求点M的轨迹方程,并说明轨迹是什么曲线。
解:(Ⅰ)设椭圆长半轴长及半焦距分别为,由已知得
,
所以椭圆的标准方程为
(Ⅱ)设,其中。由已知及点在椭圆上可得
。
整理得,其中。
(i)时。化简得
所以点的轨迹方程为,轨迹是两条平行于轴的线段。
(ii)时,方程变形为,其中
当时,点的轨迹为中心在原点、实轴在轴上的双曲线满足的部分。
当时,点的轨迹为中心在原点、长轴在轴上的椭圆满足的部分;
当时,点的轨迹为中心在原点、长轴在轴上的椭圆;
22
展开阅读全文