资源描述
八年级数学作业 9-23
班级 姓名
1.如图,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,点D为AB的中点.
(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.
①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,则经过 秒后,点P与点Q第一次在△ABC的 边上相遇?(在横线上直接写出答案,不必书写解题过程)
2.如图a,△ABC和△CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接AF和BE.
(1)线段AF和BE有怎样的大小关系?请证明你的结论;
(2)将图a中的△CEF绕点C旋转一定的角度,得到图b,这时(1)中的结论还成立吗? 作出判断并说明理由;
(3)若将图a中的△ABC绕点C旋转一定的角度,请你画出一个变换后的图形(草图即可),(1)中的结论还成立吗?作出判断不必说明理由;
(4)根据以上证明、说理、画图,归纳你的发现.
3.如图,在△ABD和△ACE中,有下列四个等式:
(1)AB=AC;(2)AD=AE;(3)∠1=∠2;(4)BD=CE.
请你以其中三个等式作为题设,余下的作为结论,
写出一个真命题.(要求写出已知,求证及证明过程)
4..数学课上,李老师出示了如下框中的题目.
小明与同桌小聪讨论后,进行了如下解答:
(1)特殊情况,探索结论
当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:
AE DB(填“>”,“<”或“=”).
(2)一般情况,证明结论:
如图2,过点E作EF∥BC,交AC于点F.(请你继续完成对以上问题(1)中所填写结论的证明)
(3)拓展结论,设计新题:
在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,则CD的长为 (请直接写出结果).
.
2
展开阅读全文