1、。宝坻区中小学课堂教学教案授课教师:付滨源授课时间:课题平面直角坐标系相关知识复习课时教学目标1、理解并掌握平面直角坐标系的构成及各部分名称,各个象限点的坐标符号特征。2、理解并掌握特殊位置点的特殊坐标、对称点的坐标、图形的平移规律。3、正确熟练地解决平面直角坐标系的相关问题。4、能用数形结合的思想解决问题。教学重点各个象限点的坐标符号特征,特殊位置点的特殊坐标、对称点的坐标、图形的平移规律。教学难点运用数形结合的思想解决平面直角坐标系的相关问题.教学方法启发式教学手段运用多媒体课型复习课教学环节教学内容教师活动学生活动一、 自主复习二、课堂练习三、课堂小结四、达标检测五、布置作业1.平面直角
2、坐标系的构成及各部分名称,各个象限点的坐标符号特征。2.特殊位置点的特殊坐标3.对称点坐标4.图形平移规律一张小卷梳理知识网络一个图形在平面直角坐标系中进行平移,其坐标就要发生相 应的变化, 可以简单地理解为: 左、右平移纵坐标不变,横坐 标变,变化规律是左减右加, 上下平移横坐标不变,纵坐标变 ,变化规律是上加下减。 通过这节课的复习你有什么收获?1.下列各点分别在坐标平面的什么位置上?A(3,2) B(0,2) C(3,2)D(3,0) E(1.5,3.5) F(2,3)2.点的坐标是(,),则点在第象限3若点(x,y)的坐标满足xy,则点在第 象限;4.若点(x,y)的坐标满足xy,且在
3、x轴上方,则点在第象限5若点的坐标是(,),则它到x轴的距离是到y轴的距离是 6. 若点在x轴上方,y轴右侧,并且到x轴、y轴距离分别是、个单位长度,则点的坐标是 7.点到x轴、y轴的距离分别是、,则点的坐标可能为 .1.点P(3,0)在 .2.点P(m+2,m-1)在y轴上,则点P的坐标是 .3.点P(x,y)满足xy=0,则点P在 . 4.点A(-1,-3)关于x轴对称点的坐标是 关于原点对称的点坐标是 . 5.若点A(m,-2),B(1,n)关于原点对称,则m= ,n= .6. 已知点A(m,-2),点B(3,m-1),且直线ABx轴,则m的值为 。例如: 当P(x ,y)向右平移a个单
4、位长度,再向上平移b个单位长度后坐标为p 。1 在平面直角坐标系中,有一点P(-,),若将P:(1)向左平移2个单位长度,所得点的坐标为_;(2)向右平移3个单位长度,所得点的坐标为_;(3)向下平移4个单位长度,所得点的坐标为_;(4)先向右平移5个单位长度,再向上平移3个单位长度,所得坐标为_。2、如果A,B的坐标分别为A(-4,5),B(-4,2),将点A向_平移_个单位长度得到点B;将点B向_平移_个单位长度得到点A 。3、如果P、Q的坐标分别为P(-3,-5),Q(2,-5),,将点P向_平移_个单位长度得到点Q;将点Q向_平移_个单位长度得到点P。1、原点O的坐标是 ,x轴上的点的
5、坐标的特点是 ,y轴上的点的坐标的特点是 ;点M(a,0)在 轴上。2、点A(1,2)关于y轴的对称点坐标是 . 点A关于原点的对称点的坐标是 。点A关于x轴对称的点的坐标为 . 3、 已知点M 与点N 关于x轴对称,则x+y= 4、 已知点A(3+a,2a+9)在第二象限的角平分线上,则a的值是 .5、已知点P(x,y)在第一、三象限的角平分线上,由x与y的关系6、在平面直角坐标系中,点一定在() A、第一象限B、第二象限C、第三象限D、第四象限7、如果点A(a,.b)在第三象限,则点B(a+1,3b5)关于原点的对称点是( ) A第一象限 B第二象限 C第三象限 D第四象限8、点P(a,b)在第二象限,则点Q(a-,b+1)在( ) (A) 第一象限 (B) 第二象限 (C) 第三象限 (D)第四象限9、若,且点M(a,b)在第二象限,则点M的坐标是( ) A、(5,4) B、(5,4) C、(5,4) D、(5,4)10、在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比( ) A.向下平移了3个单位 B.向左平移了3个单位C.向上平移了3个单位 D.向右平移了3个单位 板书设计平面直角坐标系相关知识复习1、 平面直角坐标系构成2、 各个象限内点的坐标符号特点3、特殊位置点的特殊坐标4对称点坐标5、图形平移规律教学反思