1、自动控制原理习题课习题讲解第二章内容1、试建立图示电路各系统的传递函数和微分方程。解:(a) 应用复数阻抗概念可写出 (1) (2)联立式(1)、(2),可解得: 微分方程为: (2) 由图解2-1(d)可写出 (5) (6) (7)联立式(5)、(6)、(7),消去中间变量和,可得: 微分方程为 2、试建立图示电路各系统的传递函数解:由图可写出 = 整理得 = 3、试用结构图等效化简求图2-32所示各系统的传递函数。解 (a)所以: (b)所以: (c) 所以: (d)所以: (e)所以: 4、电子心脏起博器心律控制系统结构图如题3-49图所示,其中模仿心脏的传递函数相当于一纯积分环节。 (
2、1) 若对应最佳响应,问起博器增益应取多大?(2) 若期望心速为60次/min,并突然接通起博器,问1s钟后实际心速为多少?瞬时最大心速多大?解 依题,系统传递函数为 令 可解出 将 代入二阶系统阶跃响应公式可得 时,系统超调量 ,最大心速为5、 机器人控制系统结构图如图3-50所示。试确定参数值,使系统阶跃响应的峰值时间s,超调量。 解 依题,系统传递函数为 由 联立求解得 比较分母系数得 6、 某典型二阶系统的单位阶跃响应如图3-51所示。试确定系统的闭环传递函数。 解 依题,系统闭环传递函数形式应为由阶跃响应曲线有: 联立求解得 所以有 7、 已知系统的特征方程,试判别系统的稳定性,并确
3、定在右半s平面根的个数及纯虚根。(1)(2)(3)(4)解(1)=0 Routh: S5 1 2 11 S4 2 4 10 S3 S2 10 S S0 10第一列元素变号两次,有2个正根。(2)=0 Routh: S5 1 12 32 S4 3 24 48 S3 0 S2 48 S 0 辅助方程 , S 24 辅助方程求导: S0 48系统没有正根。对辅助方程求解,得到系统一对虚根 。(3)Routh: S5 1 0 -1 S4 2 0 -2 辅助方程 S3 8 0 辅助方程求导 S2 -2 S S0 -2第一列元素变号一次,有1个正根;由辅助方程可解出: (4)Routh: S5 1 24
4、-25 S4 2 48 -50 辅助方程 S3 8 96 辅助方程求导 S2 24 -50 S 338/3 S0 -50第一列元素变号一次,有1个正根;由辅助方程可解出: 8、 系统结构图如图3-57所示。试求局部反馈加入前、后系统的静态位置误差系数、静态速度误差系数和静态加速度误差系数。解 局部反馈加入前,系统开环传递函数为 局部反馈加入后,系统开环传递函数为 9、 已知单位反馈系统的开环传递函数为 试分别求出当输入信号和时系统的稳态误差。解 由静态误差系数法时, 时, 时, 10、单位反馈系统的开环传递函数为 求各静态误差系数和时的稳态误差;解 (1) 时, 时, 时,由叠加原理 11、已
5、知开环零、极点如图4-22所示,试绘制相应的根轨迹。 ()()()()()()()() 题4-22图 开环零、极点分布图解 根轨如图解4-2所示:图解4-2 根轨迹图 12、已知单位反馈系统的开环传递函数,试概略绘出系统根轨迹。 解 系统有三个开环极点:, 实轴上的根轨迹: , 渐近线: 分离点:解之得:,(舍去)。 与虚轴的交点:特征方程为 令 解得与虚轴的交点(0,)。根轨迹如图解4-3(a)所示。 根轨迹绘制如下: 实轴上的根轨迹:, 渐近线: 分离点: 用试探法可得 。根轨迹如图解4-3(b)所示。 根轨迹绘制如下: 实轴上的根轨迹:, 分离点: 解之得:。根轨迹如图解4-3(c)所示
6、。13、若系统单位阶跃响应 试求系统频率特性。 解 则 频率特性为 14、试绘制下列传递函数的幅相曲线。 (1) (2) 解 (1) 取为不同值进行计算并描点画图,可以作出准确图形三个特殊点: =0时, =0.25时, =时, 幅相特性曲线如图解5-6(1)所示。 图解5-6(1)Nyquist图 图解5-6(2) Nyquist图(2) 两个特殊点: =0时, =时, 幅相特性曲线如图解5-6(2)所示。15、 绘制下列传递函数的渐近对数幅频特性曲线。(1) ; (2) ; (3) (4) (5) 解 (1) 图解5-9(1) Bode图 Nyquist图(2) 图解5-9(2) Bode图
7、 Nyquist图(3) 图解5-9(3) Bode图 Nyquist图 (4) 图解5-9(4) Bode图 Nyquist图 (5) 图解5-9(5) Bode图 Nyquist图16、 三个最小相角系统传递函数的近似对数幅频特性曲线分别如图5-78(a)、(b)和(c)所示。要求: (1)写出对应的传递函数;(2)概略绘制对应的对数相频特性曲线。图 578 511题图解 (a) 依图可写出:其中参数: ,则: 图解5-11(a) Bode图 Nyquist图 (b) 依图可写出 图解5-11(b) Bode图 Nyquist图 (c) 图解5-11(c) Bode图 Nyquist图17
8、、已知反馈系统,其开环传递函数为 (1) (2) (3) (4) 试用奈氏判据或对数稳定判据判断闭环系统的稳定性,并确定系统的相角裕度和幅值裕度。 解 (1) 画Bode图得: 图解5-19 (1) Bode图 Nyquist图 (2) 画Bode图判定稳定性:Z=P-2N=0-2(-1)=2 系统不稳定。由Bode图得:令: 解得 令: 解得 图解5-19 (2) Bode图 Nyquist图(3) 画Bode图得: 系统临界稳定。 图解5-19 (3) Bode图 Nyquist图18、某最小相角系统的开环对数幅频特性如图5-82所示。要求(1) 写出系统开环传递函数;(2) 利用相角裕度判断系统的稳定性;解(1)由题5-29图可以写出系统开环传递函数如下: (2)系统的开环相频特性为 截止频率 相角裕度 故系统稳定。19、 对于典型二阶系统,已知参数,试确定截止频率和相角裕度。解 依题意,可设系统的开环传递函数为绘制开环对数幅频特性曲线如图解5-25所示,得5-26 对于典型二阶系统,已知=15,试计算相角裕度。 解 依题意,可设系统的开环传递函数为 依题 联立求解 有 绘制开环对数幅频特性曲线如图解5-26所示,得