1、实际问题与二次函数应用复习教师导学案学习目标:熟练运用二次函数知识解决实际问题活动方案:活动一(以题理知)1.在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构根据市场调查,这种许愿瓶一段时间内的销售量y(个)与销售单价x(元/个)之间的对应关系如图所示:(1)试判断y与x之间的函数关系,并求出函数关系式;(2)若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润w(元)与销售单价x(元/个)之间的函数关系式;(3)在(2)的条件下,若许愿瓶的进货成本不超过900元,要想获得最大利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润
2、2.某公园有一个抛物线形状的观景拱桥ABC,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为y=- x2+c且过顶点C(0,5)(长度单位:m)(1)直接写出c的值;(2)现因搞庆典活动,计划沿拱桥的台阶表面铺设一条宽度为1.5m的地毯,地毯的价格为20元/m2,求购买地毯需多少元?(3)在拱桥加固维修时,搭建的“脚手架”为矩形EFGH(H、G分别在抛物线的左右侧上),并铺设斜面EG已知矩形EFGH的周长为27.5m,求斜面EG的倾斜角GEF的度数(精确到0.1)活动二:(经典例题)1.图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE,ED,DB组成
3、,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED的距离是11米,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系(1)求抛物线的解析式;(2)已知从某时刻开始的40小时内,水面与河底ED的距离h(单位:米)随时间t(单位:时)的变化满足函数关系h=- (t-19)2+8(0t40),且当水面到顶点C的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?2跳绳时,绳甩到最高处时的形状是抛物线正在甩绳的甲、乙两名同学拿绳的手间距为米,到地面的距离和均为米,身高为米的小丽站在距点的水平距离为米的点处,绳子甩到最高处时刚好通过她的
4、头顶点以点为原点建立如图所示的平面直角坐标系设此抛物线的解析式为(1)求该抛物线的解析式;(2)如果小华站在之间,且离点的距离为米,当绳子甩到最高处时刚好通过他的头顶,请你算出小华的身高;(3)如果身高为米的小丽站在之间,且离点的距离为米,绳子甩到最高处时超过她的头顶,请结合图象,写出的取值范围 检测反馈:1.一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件今年计划通过适当增加成本来提高产品档次,以拓展市场若今年这种玩具每件的成本比去年成本增加0.7x倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0
5、x11)用含x的代数式表示,今年生产的这种玩具每件的成本为_元,今年生产的这种玩具每件的出厂价为_元求今年这种玩具的每件利润y元与x之间的函数关系式设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价每件玩具的成本)年销售量2某商场将进价为30元的书包以40元售出,平均每月能售出600个。调查表明:这种书包的售价每上涨1元,其销售量就减少10个。 (1)请写出每月售出书包的利润y(元)与每个书包涨价x(元)的函数关系式; (2)设某月的利润为10000元,10000元的利润是否为该月最大利润?如果是,请说明理由;
6、如果不是,请求出最大利润,并指出此时书包的售价应定为多少元。 (3)请分析并回答售价在什么范围内商家就可获得利润。活动一(以题理知)1.在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构根据市场调查,这种许愿瓶一段时间内的销售量y(个)与销售单价x(元/个)之间的对应关系如图所示:(1)试判断y与x之间的函数关系,并求出函数关系式;(2)若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润w(元)与销售单价x(元/个)之间的函数关系式;(3)在(2)的条件下,若许愿瓶的进货成本不超过900元,要想获得最大利润,试确定这种许愿瓶的销售
7、单价,并求出此时的最大利润2.某公园有一个抛物线形状的观景拱桥ABC,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为y=- x2+c且过顶点C(0,5)(长度单位:m)(1)直接写出c的值;(2)现因搞庆典活动,计划沿拱桥的台阶表面铺设一条宽度为1.5m的地毯,地毯的价格为20元/m2,求购买地毯需多少元?(3)在拱桥加固维修时,搭建的“脚手架”为矩形EFGH(H、G分别在抛物线的左右侧上),并铺设斜面EG已知矩形EFGH的周长为27.5m,求斜面EG的倾斜角GEF的度数(精确到0.1)活动二:(经典例题)1.图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形
8、的三边AE,ED,DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED的距离是11米,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系(1)求抛物线的解析式;(2)已知从某时刻开始的40小时内,水面与河底ED的距离h(单位:米)随时间t(单位:时)的变化满足函数关系h=- (t-19)2+8(0t40),且当水面到顶点C的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?2跳绳时,绳甩到最高处时的形状是抛物线正在甩绳的甲、乙两名同学拿绳的手间距为米,到地面的距离和均为米,身高为米的小丽站在距点的水平距离为米的点处,绳
9、子甩到最高处时刚好通过她的头顶点以点为原点建立如图所示的平面直角坐标系设此抛物线的解析式为(1)求该抛物线的解析式;(2)如果小华站在之间,且离点的距离为米,当绳子甩到最高处时刚好通过他的头顶,请你算出小华的身高;(3)如果身高为米的小丽站在之间,且离点的距离为米,绳子甩到最高处时超过她的头顶,请结合图象,写出的取值范围 检测反馈:1.一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件今年计划通过适当增加成本来提高产品档次,以拓展市场若今年这种玩具每件的成本比去年成本增加0.7x倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年
10、年销售量增加x倍(本题中0x11)用含x的代数式表示,今年生产的这种玩具每件的成本为_元,今年生产的这种玩具每件的出厂价为_元求今年这种玩具的每件利润y元与x之间的函数关系式设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价每件玩具的成本)年销售量2某商场将进价为30元的书包以40元售出,平均每月能售出600个。调查表明:这种书包的售价每上涨1元,其销售量就减少10个。 (1)请写出每月售出书包的利润y(元)与每个书包涨价x(元)的函数关系式; (2)设某月的利润为10000元,10000元的利润是否为该月最大利润?如果是,请说明理由;如果不是,请求出最大利润,并指出此时书包的售价应定为多少元。 (3)请分析并回答售价在什么范围内商家就可获得利润。