1、小学+初中+高中+努力=大学小学+初中+高中+努力=大学圆的有关性质教学目标:知识目标:(1)理解圆、等圆、等弧等概念及圆的对称性,掌握点和圆的位置关系;(2)掌握垂径定理及其逆定理和圆心角,弧,弦,弦心距及圆周角之间的主要关系;掌握圆周角定理并会用它们进行计算;(3)掌握圆的内接四边形的对角互补,外角等于它的内对角的性质。(4)会用尺规作三角形的外接圆;了解三角形的外心的概念.能力目标:通过知识点和典型题的讲练,使学生熟练掌握本节课的知识点,再用题图变形与题组训练来培养学生综合运用知识的能力以及思维的灵活性和广阔性。情感目标:通过题图变形与题组训练来激发学生学习数学的兴趣;同时将课本的题目与
2、中考题结合在教学当中以进一步向学生强调“依纲靠本”的复习指导思想,强化学生的中考意识。知识结构圆圆周角定理的弧的概念距的关系圆心角、弦、弧、弦心旋转不变性垂径定理轴对称性质点的轨迹不在同一直线上的三点定义1圆内接四边形及性质重点、热点垂径定理及推论;圆心角、弧、弦、弦心距之间的关系定理.运用圆内接四边形的性质解有关计算和证明题.【典型例析】例 1.(1)2002.广西 如图 7.1-1.OE、OF 分别是 O 的弦 AB、CD的弦心距,若OE=OF,则(只需写出一个正确的结论).(2)2002.广西 如图 7.1-2.已知,AB为 O的直径,D为弦 AC的中点,BC=6cm,则 OD=.特色
3、以上几道中考题均为直接运用圆的有关性质解题.解答 (1)AB=CD或 AB=CD或 AD BC,直接运用圆心角、弧、弦、弦心距之间的关系定理.(2)由三角形的中位线定理知OD=21BC 拓展 复习中要加强对圆的有关性质的理解、运用.例 2.(1)2002.大连市 下列命题中真命题是().A.平分弦的直径垂直于弦 B.圆的半径垂直于圆的切线 C.到圆心的距离大于半径的点在圆内 D.等弧所对的圆心角相等(2)2002.河北 如图 7.1-3.AB是 O的直径,CD是 O弦,若 AB=10cm,CD=8cm,那么 A、B两点到直线CD的距离之和为().A.12cm B.10cm C.8cm D.6c
4、m(3)2002.武汉市 已知如图7.1-4圆心角BOC=100,则圆周角BAC的度数是().A.50 B.100 C.130 D.200 特色 着眼于基本知识的考查和辨析思维的评价.解答 (1)D(考查对基本性质的理解).(2)D (过 O作 OM CD,连结 OC,由垂径定理得CM=21CD=4,由勾股定理得 OM=3,而 AB两点到 CD的距离和等于 OM的 2 倍)(3)A (由圆周角定理可得)拓展 第(2)题中,涉及圆的弦一般作弦心距.小学+初中+高中+努力=大学小学+初中+高中+努力=大学例 3.2002.广西南宁市 圆内接四边形ABCD,A、B、C的度数的比是12 3,则这个四边
5、形的最大角是 .特色 运用圆内接四边形的性质进行简单计算.解答 设A=x,则 B=2x,C=3x.A+C=180,x+3x=180,x=45.A=45,B=90,C=135,D=90.最大角为135.拓展 此题着眼于基本性质、基本方法的考查.设未知数,列方程求解是解此类题的基本方法.例 4.2002.陕西 已知,如图7.1-5 BC为半圆 O的直径,F 是半圆上异于BC的点,A是 BF的中点,AD BC于点 D,BF交 AD于点 E.(1)求证:BE?BF=BD?BC(2)试比较线段BD与 AE的大小,并说明道理.特色 此题是教材中的习题变形而来,它立意于考查分析、观察、比较、归纳等能力.解答
6、 (1)连结 FC,则 BFFC.在 BDF和 BCF中,BFC=EDB=90,FBC=EBD,BDE BFC,BE BC=BD BF.即 BF?BE=BD?BC.(2)AEBD,连结AC、AB 则BAC=90.AFAB,1=2.又 2+ABC=90,3+ABD=90,2=3,1=3,AE=BE.在 RtEBD中,BEBD,AEBD.拓展 若 AC交 BE于 G,请想一想,在什么情况下线段BE、BG、FG有相等关系?例 5.2001.吉林省 如图7.4-1,矩形ABCD,AD=8,DC=6,在 对角线 AC上取一点 O,以 OC为半径的圆切AD于 E,交 BC于 F,交 CD于 G.(1)求
7、O的半径 R;(2)设 BFE=,GED=,请写出、90 三者之间的关系式(只需写出一个),并证明你的结论.特色 此题第二问设计为开放性问题,它立意考查学生分析、观察、比较、归纳能力.解答 (1)连结 OE,则 OE AD.四边形是矩形,D=90,OE CD,AC=22DCAD=2268=10.AOE ACD,OECD=AO AC,R 6=(10-R)10,解之得:R=415.(2)四边形是圆的内接四边形,EFB=EGC,EGC=90+,=90+或 90,90 .拓展 比较角的大小时,要善于发现角与角之间的关系,判断角是锐角还是直角、钝角.中考动态前瞻 本节考查的题型常以填空、选择、解答题的形式出现,重点考查对圆的基本慨念、基本性质的理解及运用.特别是垂径定理及推论、圆周角定理及推论的运用是考查的重点内容.对圆内接四边形的性质进行考查,主要以填空题、选择题、计算题、证明题的形式出现,利用圆内接四边形的性质主要是得到角相等或互补.一般不会小学+初中+高中+努力=大学小学+初中+高中+努力=大学考较复杂的计算、证明.