收藏 分销(赏)

高中数学必修一函数及其性质知识点总结归纳.pdf

上传人:a199****6536 文档编号:5855160 上传时间:2024-11-21 格式:PDF 页数:5 大小:354.13KB
下载 相关 举报
高中数学必修一函数及其性质知识点总结归纳.pdf_第1页
第1页 / 共5页
高中数学必修一函数及其性质知识点总结归纳.pdf_第2页
第2页 / 共5页
高中数学必修一函数及其性质知识点总结归纳.pdf_第3页
第3页 / 共5页
高中数学必修一函数及其性质知识点总结归纳.pdf_第4页
第4页 / 共5页
高中数学必修一函数及其性质知识点总结归纳.pdf_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、1 (每日一练每日一练)高中数学必修一函数及其性质知识点总结归纳高中数学必修一函数及其性质知识点总结归纳 单选题 1、设函数()=ln|2+1|ln|2 1|,则f(x)()A是偶函数,且在(12,+)单调递增 B是奇函数,且在(12,12)单调递减 C是偶函数,且在(,12)单调递增 D是奇函数,且在(,12)单调递减 答案:D 解析:根据奇偶性的定义可判断出()为奇函数,排除 AC;当 (12,12)时,利用函数单调性的性质可判断出()单调递增,排除 B;当 (,12)时,利用复合函数单调性可判断出()单调递减,从而得到结果.由()=ln|2+1|ln|2 1|得()定义域为|12,关于坐

2、标原点对称,又()=ln|1 2|ln|2 1|=ln|2 1|ln|2+1|=(),()为定义域上的奇函数,可排除 AC;当 (12,12)时,()=ln(2+1)ln(1 2),=ln(2+1)在(12,12)上单调递增,=ln(1 2)在(12,12)上单调递减,()在(12,12)上单调递增,排除 B;当 (,12)时,()=ln(2 1)ln(1 2)=ln2+121=ln(1+221),=1+221在(,12)上单调递减,()=ln在定义域内单调递增,2 根据复合函数单调性可知:()在(,12)上单调递减,D 正确.故选:D.小提示:本题考查函数奇偶性和单调性的判断;判断奇偶性的方

3、法是在定义域关于原点对称的前提下,根据()与()的关系得到结论;判断单调性的关键是能够根据自变量的范围化简函数,根据单调性的性质和复合函数“同增异减”性得到结论.2、函数()=2+2(1 )+3在区间(,4上单调递增,则的取值范围是()A3,+)B3,+)C(,5D(,3 答案:D 解析:先求出抛物线的对称轴=2(1)2=1 ,而抛物线的开口向下,且在区间(,4上单调递增,所以1 4,从而可求出的取值范围 解:函数()=2+2(1 )+3的图像的对称轴为=2(1)2=1 ,因为函数()=2+2(1 )+3在区间(,4上单调递增,所以1 4,解得 3,所以的取值范围为(,3,故选:D 3、函数()在区间1,5上的图象如图所示,()=()0,则下列结论正确的是 3 A在区间(1,0)上,()递增且()0 B在区间(1,0)上,()递增且()0 D在区间(1,0)上,()递减且()0,故0()d表示曲线()与轴以及直线=0和=所围区域面积,当增大时,面积减小,0()d减小,()增大,故()递增且()0,选项 B 错误.故选:A.小提示:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势(3)从函数的奇偶性,判断图象的对称性(4)从函数的特征点,排除不合要求的图象利用上述方法排除、筛选选项

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服