1、数学建模作业(六)2013年5月5日10、一个角度为60的圆锥形漏斗里面装h高的水,其下端漏孔的面积为s2。试组建模型描述漏斗中的水流出的情况。1. 模型假设假设任意时刻漏斗中的水是完整的圆锥体,即s/h;假设漏斗柄很短,同一时刻漏斗柄内水的流速可近似视为相同;假设离开漏斗柄的水与漏斗柄中水无粘连;假设漏斗光滑,不考虑摩擦力、液体黏性等除重力、大气压力、支持力以外的力。2. 变量与参量符号单位说明hm漏斗内水面高度am漏斗内水面半径sm2漏孔面积vm/s漏孔水流速度Qm3/s水流量gkgm/s2重力加速度Vm3漏斗内水体积dm漏斗柄长度P0Pa大气压强kg/m3水的密度其中dh.3. 建立模型
2、由几何关系易知a=h/3,V=13a2h.漏斗上下端水流量相等:Q=Vt=13a2htQ=vs,故有v=h23sht.漏斗柄中水的受力情况:dsg+P0+ghs-P0s=dsdvdt,故有dvdt=g+gh/d,v=gt+g/d0thdt,h=dvdtg-1d.因此v=dh23sgd2vdt2=d33sg3(dvdt-g)2d2vdt2.4. 问题总结综上所述,由gt+g/d0thdt知,水的流出速度v随时间推移、水位h减小而增大;由dvdt=g+gh/d知,随着水的流出(h减小),水的流出速度变化率减小,逐渐趋近于重力加速度g;水流出速度v随时间t的变化关系为v=d33sg3(vt-g)22
3、vt2。(5)假设讨论由该模型得出的结论基本符合生活经验,证明该模型的假设有一定的可取性。但是,该假设是建立在漏斗中的水是完整圆锥体的基础上的,一方面需要保证s/h,当水将要流尽时速度v不符合以上模型;另一方面,实际生活中漏斗中向下流出的水面不可能完全平整,由于地球自转偏向力的作用,水面实际上是逆时针旋涡状,并且随着流速的增大漩涡也越来越明显。这使得模型与实际情况有一定的误差,只能得出定性结论。11、取n只相同的杯子装满水,并且一只放在另一只下面依次排列。向最上面的杯子以定常的速度倒入与杯子容量相同的葡萄酒,溢出的液体刚好流入到下面的一个杯子中去,第二只杯子溢出的液体再流入第三只杯子假设葡萄酒
4、和水的均匀混合是瞬时发生的,建模描述各杯子中的葡萄酒的浓度的动态。1. 假设:溢出的液体全部流入下一个杯子 2. 平衡关系: 每只杯子的容积固定,在时间段t,t+t内, 每只杯子中混合液体溢出量等于这段时间注入第一只杯子的葡萄酒的体积 在时间段t,t+t内, 每只杯之中葡萄酒的的改变量等于这段时间内流入的(纯)葡萄酒的量与溢出的(纯)葡萄酒的量之差。 3. 变量、参量: 第n只杯子中的浓度 pn(t); 注入葡萄酒的速度 rI(也就等于混合液体流出的速度)每只杯子的体积为V 4. 建模: 由于每个杯子的体积恒定,在时间段t,t+t内, 注入的葡萄酒的量为r*t,即每个杯子中流出的液体的量。 每
5、个杯子中纯葡萄酒的改变量为pn(t+t)-pn(t)r*t, 其中流入第n个杯子中的葡萄酒的量为流出第n个杯子中的葡萄酒的量为所以利用积分中值定理 等式两端同时除以t ,且令t0取极限, 体积不变,得第n个杯子的葡萄酒浓度为12、在对病人点滴注射某种药物时,由于注射时间比较长,体内的血液总量可以认为是不变的。现设注射的速率为k mg/min,人体吸收和排泄引起血液中药物的减少率正比于药物的浓度。试建模描述血液中药物浓度的动态。1. 假设:药物进入体内后立即和血液融合血液中药物的浓度相同身体各部分对药物的吸收率相同2. 平衡关系:药物的减少量是注射的药物量减去人体吸收和排泄的药物量3. 涉及到的量:血液中药物的减少率r(t)药物在血液中的浓度p(t)血液中药物的减少率r(t)与药物在血液中的浓度p(t)的比例为h体内血液总量V4. 建模:在时间段t,t+t内,身体中(纯)药物的改变量为p(t+t)-p(t)V在时间段t,t+t内,输入的药物量为k*t,人体吸收和排泄的药物量为因为,得到 由此可得, 等式右端用积分中值定理等式两端同除t,并令取极限,得