收藏 分销(赏)

教学反思MicrosoftWord文档.doc

上传人:仙人****88 文档编号:5823876 上传时间:2024-11-20 格式:DOC 页数:4 大小:41.51KB 下载积分:10 金币
下载 相关 举报
教学反思MicrosoftWord文档.doc_第1页
第1页 / 共4页
教学反思MicrosoftWord文档.doc_第2页
第2页 / 共4页


点击查看更多>>
资源描述
用频率估计概率 一、目标分析 1、知识技能: 理解概率的含义并能通过大量重复试验确定概率。 经历用试验的方法获得概率的过程,培养学生的合作交流意识和动手能力。 在由“试验形成概率的定义”的过程中培养学生分析问题能力和抽象思维能力。 2、过程方法: 以分组做试验的方式导入和展开课堂,让学生自主学习课本例题,通过分组讨论,合作交流的方式完成课堂学习。 3、重点和难点 概率的实际意义是本节的重点和难点,正确理解频率和概率的关系,如何正确理解每次试验结果的随机性与大量随机试验结果的规律性是本节的难点。 4、情感态度和价值观 利用生活素材激发学生学习数学的热情和兴趣。 通过分层设置问题培养学生的数学学习的自信。结合随机试验的随机性和规律性,让学生了解偶然性寓于必然性之中的辩证唯物主义思想。 二、过程: 1、课堂导入 利用多媒体展示图片和问题对随机事件,必然事件,不可能事件进行复习。通过生动的实物图片和生活情境,让学生对事件的随机性和可能性作出判断, 同时引出本节课的中心问题:随机事件发生的可能性有多大呢?如(遇上红灯、生个儿子、天气晴好)。自然地把学生引入到随机事件的概率的探究过程中来。 2、 课堂展开 要研究随机事件的概率,抛掷硬币的试验既典型又方便,为了达到自然而然的效果,我给学生设置了一个问题,如果让两个同学举行象棋比赛,用一种公平的方式决定让谁先走棋, 学生会说出抓阄或者抛掷硬币, 顺势提问:用抛掷硬币对比赛双方公平吗?为什么? 学生可能会回答公平,而为什么公平学生可能回答不上来,接着就提出能否用试验来验证?学生会心存疑虑。 第一步:分组试验 将全班分四组,要求第一组掷一枚硬币2次,第二组投掷硬币20次,第三组投掷硬币60次,第四组投掷硬币100次,并分别把试验数据记录在表格中。 分析试验结果: 提问(1):各小组正面朝上的频率一样吗?分别为多少? 提问(2):各小组反面向上的频率一样吗?分别为多少? 提问(3):如果把全班四个小组的结果进行累计,正面朝上的频率是多少,会有变化吗?反面向上的呢? 设计意图: 通过提问1:引导学生认识到随机事件的发生具有偶然性。 2:引导学生发现在次数逐渐增大的情况下,频率数值渐趋稳定。 第二步:比较试验 让学生对历史上的数学家们所做的实验和自己分组所做的实验进行对比。历史上棣莫弗 、布丰 、费勒 、皮尔逊 都对抛掷硬币的正反面向上的随机性问题做过实验,书上也有相应的记载,让学生对比。这让学生既了解到一些数学家的故事、感受到他们为追求真理而做的牺牲和努力,又可以得到:几位数学家的试验结果跟我们今天的试验结果大致相同,大量试验次数下频率数值稳定于0.5。这样学生会很有成就感,老师趁此提出鼓励和希望,只要努力你们也可以成为数学家。 以上的试验说明:“正面向上”的频率稳定于0.5,“反面向上”的频率也稳定于0.5。由两个频率稳定到的常数相等说明两者发生的可能性相等,从而验证了猜想,判断公平的直觉是对的。 设计意图:让学生认识到,大量重复试验下,任意抛掷硬币“正面朝上”这个随机事件发生的频率逐渐稳定到的常数刻画了随机事件发生的可能性的大小。 3、形成概念 深化认识 让学生通过以上的学习和对课本的自学,归结概率概念:一般地,在大量重复试验中,如果事件A发生的频率 会稳定在某个常数p附近,那么这个常数p叫做事件A的概率,记作P(A)=p。其中m是事件A发生的频数,n是试验次数。 思考(1):概率的取值范围是什么呢? 思考(2):定义中的“频率”和“概率”有何区别和联系? 结合投币试验,同学知道各小组试验算出的频率不一定等于概率。区别就是:频率不一定等于概率,概率是频率趋于稳定的那个值。 例:对某电视机厂生产的电视机进行抽样检测的数据如下: 抽取台数 50 100 200 300 500 1000 优等品数 45 92 192 285 478 954 频率 0.9 0.92 0.96 0.95 0.96 0.95 问题一:计算表中优等品的频率 问题二:估计该厂生产的优等品的概率 设计意图:通过本题,让学生更具体的理解概率,巩固概率和频率的关系,了解频率不一定等于概率,而是围绕概率波动。同时也让学生进一步认识到,大量重复实验是确定概率的一种方法。 4、拓展提高 问题一:投掷硬币正面向上的概率是0.5,那么连续投掷20次硬币,则一定会有10次正面向上,这样的说法对吗,为什么? 问题二:天气预报说明天晴天的概率是80%,小明说“明天肯定是晴天,要不就是天气预报不准”小明说的对吗? 设计意图:问题一为了让学生辩证的对频率和概率二者间的关系加以认识。问题二是从可能性上让学生对概率有清醒的认识。通过这两个问题使学生正确理解大量随机实验结果的规律性和每次实验结果的随机性。 5,总结归纳,问题延伸 问题一:通过对本节的学习,你掌握了那些知识? 问题二:对频率和概率你是怎么理解的,二者间有什么关联和区别? 问题三:生活中那些问题会用到概率和频率,或者说概率和频率能解决生活中的那类问题? 6,作业: 课本144页第1题和第2题 四,板书设计 对学生的实验结论展示 学生总结本节内容展示 对概率的概念总结 作业布置 例题解答 五,反思评价 1,通过回顾巩固,让学生为本节课的展开做好知识储备,设置情境性的问题营造了学习气氛。 2,为了让学生对频率和概率二者间的关系和区别有清醒的认识,我采用了实验探究的方式。充分调动了学生的学习积极性。采用小组谈论和启发的方式让学生对每次试验结果的随机性与大量随机试验结果的规律性有了正确的认识。 3,为了达到好的教学效果,利用了多媒体技术。 4,教学理念上,关注教材的变化和学生的认知特点,采取启发式的逐步渗透的学习策略。以学生为中心,关注学生的心理需求,重视学生的合作探究,肯定学生的进步,捕捉学生的发光点,对课堂上生成性问题,及时处理和组织学生探究。 5,为了让课堂顺利展开,我做了充分的课前准备,课堂是态的过程,是不断变化的,对可能出现的问题做了提前的思考和准备,制定了应对的策略。
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服