1、第五章 曲线运动5.1 曲线运动(3课时)三维教学目标1、知识与技能(l)知道曲线运动中速度的方向,理解曲线运动是一种变速运动;(2)知道物体做曲线运动的条件是所受的合外力与它的速度方向不在一条直线上。2、过程与方法(1)体验曲线运动与直线运动的区别;(2)体验曲线运动是变速运动及它的建度方向的变化。3、情感、态度与价值观(1)能领略曲线运动的奇妙与和谐,发展对科学的好奇心与求知欲;(2)有参与科技活动的热情,将物理知识应用于生活和生产实践中。教学重点:什么是曲线运动;物体做曲线运动的方向的确定;物体做曲线运动的条件。教学难点:物体微曲线运动的条件。教学方法:探究、讲授、讨论、练习教具准备:投
2、影仪、投影片、斜面、小钢球、小木球、条形磁铁。教学过程:第一节 曲线运动(一)新课导入前面我们学习过了各种直线运动,包括匀速直线运动、匀变速直线运动、自由落体运动等。下面来看这个小实验,判断该物体的运动状态。实验:(1)演示自由落体运动,该运动的特征是什么?(轨迹是直线) (2)演示平抛运动,该运动的特征是什么?(轨迹是曲线)这里我们看到一种我们前面没有学过的运动形式,它与我们前面学过的运动形式有本质的区别。前面我们学过的运动的轨迹都是直线,而我们现在看到的这种运动的轨迹是曲线,我们把这种运动称为曲线运动。概念:轨迹是曲线的运动叫曲线运动。其实曲线运动是比直线运动普遍的运动情形,现在请大家举出
3、一些生活中的曲线运动的例子?(微观世界里如电子绕原子核旋转;宏观世界里如天体运行;生活中如投标抢、掷铁饼、跳高、既远等均为曲线运动)(二)新课教学1、曲线运动速度的方向在前面学习直线运动的时候我们已经知道了任何确定的直线运动都有确定的速度方向,这个方向与物体的运动方向相同,现在我们又学习了曲线运动,大家想一想我们该如何确定曲线运动的速度方向?在解决这个问题之前我们先来看几张图片(如图61l、612)。观察图中所描述的现象,你能不能说清楚,砂轮打磨下来的炽热的微粒。飞出去的链球,它们沿着什么方向运动?射出的火星是砂乾与刀具磨擦出的微粒,由于惯性,以脱离砂轮时的速度沿切线方向飞出,切线方向即为火星
4、飞出时的速度方向。对于链球也是同样的道理,它们也会沿着脱离点的切线方向飞出。刚才的几个物体的运动轨迹都是圈,我们总结曲线运动的方向沿着切线方向,但对于一般的曲线运动是不是也是这样呢?下面我们来做个实验看一看,一般的曲线运动是什么情况。(演示实验)在匀变速运动中,速度大小发生变化,我们说这是变速运动,而在曲线运动中,速度方向时刻在改变,我们也说它是变速运动。实际上这个过程我们可以这样来理解:速度是矢量+速度方向变化,速度矢量就发生了变化具有加速度曲线运动是变速运动。(2)物体做曲线运动的条件演示实验:在刚才实验中,钢球的运动路径旁边放一块磁铁,重复刚才的实验操作,观察钢球在桌面上的运动情况?(钢
5、球傲曲线运动)分析钢球在桌面上的受力情况?(钢球受竖直向下的重力,竖直向上的支持力,还受到方向与运动方向相反的滑动摩擦力的作用,此外还受到磁铁的吸引力。)引力的方向如何?(引力的方向随着钢球的运动不断改变,但总是不与运动方向在同一直线上。)演示实验:把上次实验用的钢球改为同等大小的木球重复上次实验,观察木球运动情况?(木球做直线运动,速度不断减小。)分析木球在桌面上的受力情况?(木球受竖直向下的重力、竖直向上的支持力,还受到方向与运动方向相反的滑动摩擦力的作用,木球并不受到磁铁给它的吸引力。)演示实验:随手抛出一个粉笔头,观察粉笔头的运动状态?(粉笔头做曲线运动)结论:当物体所受的合力方向跟它
6、的速度方向不在同一直线上时,物体将做曲线运动。3、交流与讨论(1)飞机扔炸弹,分析为什么炸弹做曲线运动?(2)我们骑摩托车或自行车通过弯道时,我们侧身骑,为什么?(3)盘山公路路面有何特点?火车铁轨在弯道有何特点?4、小结:(1)运动轨迹是曲线的运动叫曲线运动。(2)曲线运动中速度的方向是时刻改变的,质点在某一点的瞬时速度的方向在曲线的这一点的切线上。(3)当合外力F的方向与它的速度方向有一夹角时,物体做曲线运动。板书设计:5.1 曲线运动1、曲线运动定义:运动轨迹是曲线的运动叫做曲线运动。2、物体做曲线运动的条件当物体所受的合力方向跟它的逮度方向不在同一直线上时,物体将做曲线运动。3、曲线运
7、动速度的方向质点在某一点的速度,沿曲线在这一点的切线方向。4、曲线运动的性质曲线运动过程中速度方向始终在变化,因此曲线运动是变速运动。5.2平抛运动(2课时)三维教学目标1、知识与技能(1)在具体情景中,知道合运动、分运动分别是什么,知道其同时性和独立性;(2)知道运动的合成与分解,理解运动的合成与分解遵循平行四边形定则;(3)会用作图和计算的方法,求解位移和速度的合成与分解问题。2、过程与方法(1)通过对抛体运动的观察和思考,了解一个运动可以与几个不同的运动效果相同,体会等效替代的方法;(2)通过观察和思考演示实验,知道运动独立性学习化繁为筒的研究方法;(3)掌握用平行四边形定则处理简单的矢
8、量运算问题。3、情感、态度与价值观(1)通过观察,培养观察能力;(2)通过讨论与交流,培养勇于表达的习惯和用科学语言严谨表达的能力。教学重点(1)明确一个复杂的运动可以等效为两个简单的运动的合成或等效分解为两个简单的运动;(2)理解运动合成、分解的意义和方法。教学难点:分运动和合运动的等时性和独立性;应用运动的合成和分解方法分析解决实际问题。教学方法:探究、讲授、讨论、练习教学用具:演示红蜡烛运动的有关装置。教学过程:第二节 平抛运动(一)新课导入上节课我们学习了曲线运动的定义,性质及物体做曲线运动的条件,先来回顾一下这几个问题:什么是曲线运动?(运动轨迹是曲线的运动是曲线运动。)怎样确定做曲
9、线运动的物体在某一时刻的速度方向?(质点在某一点的速度方向沿曲线在这一点的切线方向。)物体在什么情况下做曲线运动?(当物体所受合力的方向跟它的速度方向不在同一直线上时,物体做曲线运动。)通过上节课的学习,我们对曲线运动有了一个大致的认识,但我们还投有对曲线运动进行深入的研究,要研究曲线运动需要什么样的方法呢?这节课我们就来研究这个问题。(二)新课教学我们先来回想一下我们是怎样研究直线运动的,同学们可以从如何确定质点运动的位移来考虑。可以沿着物体或质点运动的轨迹建立直线坐标系,通过物体或质点坐标的变化可以确定其位移,从而达到研究物体运动过程的目的。下面我们就来探究一下怎样应用运动的合成与分解来研
10、究曲线运动。演示实验:如图62l所示,在一端封闭、长约l m的玻璃管内注满清水,水中放一红蜡做的小圆柱体R,将玻璃管的开口端用胶塞塞紧。(图甲)将这个玻璃管倒置(图乙),蜡块R就沿玻璃管上,如果旁边放一个米尺,可以看到蜡块上升的速度大致不变,即蜡块做匀连直线运动。再次将玻璃管上下颠倒,在蜡块上升的同时将玻璃管水平向右匀速移动,观察蜡块的运动。(图丙)1、蜡块的位置蜡块在两个方向上做的都是匀速直线运动,所以x、y可以通过匀速直线运动的位移公式x=vt获得,即:x=vxt y=vyt2、蜡块的运动轨迹我们可以先从公式(1)中解出tt=x/vx y=vy x/vx现在我们对公式进行数学分析,看看它究
11、竟代表的是一条什么样的曲线呢?由于蜡块在x、y两个方向上做的都是匀速直线运动,所以vy 、vx都是常量所以vy /vx也是常量,可见公式表示的是一条过原点的倾斜直线。3、蜡块的位移在坐标系中,线段OP的长度就代表了物体位移的大小。现在我找一位同学来计算一下这个长度。因为坐标系中的曲线就代表了物体运动的轨迹,所以我们只要求出该直线与x轴的夹角就可以了。要求我们只要求出它的正切就可以了。tan=vy /vx这样就可以求出,从而得知位移的方向。4、交流与探究现在我们探讨了蜡块在玻璃管中的运动,请大家考虑实际生活中我们遇到的哪些物体的运动过程与蜡块相似?典型事例:小船过河, 5、蜡块的速度根据我们前面
12、学过的速度的定义,物体在某过程中的速度等于该过程的位移除以发生这段位移所需要的时间,即前面我们已经求出了蜡块在任意时刻的位移的大小所以我们可以直接计算蜡块的位移,直接套入速度公式我们可以得到什么样的速度表达式?带人公式可得:分析这个公式我们可以得到什么样的结论?vy /vx都是常量,也是常量。也就是说蜡块的速度是不发生变化的,即蜡块做的是匀速运动。我们就可以得出运动合成与分解的概念了:由分运动求合运动的过程叫做运动的合成;由合运动求分运动的过程叫做运动的分解。思考与讨论如果物体在一个方向上的分运动是匀速直线运动,在与它垂直方向的分运动是匀加速直线运动。合运动的轨迹是什么样的?(参考提示:匀速运
13、动的速度V1和匀速运动的初速度的合速度应如图623所示,而加速度a与v2同向,则a与v合必有夹角,因此轨迹为曲线。)下面我们来看一个通过运动的合成与分解解决实际问题的例子。课堂训练(1)关于运动的合成,下列说法中正确的是( )A合运动的速度一定比每一个分运动的速度大B两个匀速直线运动的合运动,一定是匀速直线运动C两个分运动是直线运动的合运动,一定是直线运动D两个分运动的时间,一定与它们的合运动的时间相等(2)如果两个分运动的速度大小相等且为定值,则以下说法中正确的是( )A两个分运动夹角为零,合速度最大B两个分运动夹角为90,合速度大小与分速度大小相等C合速度大小随分运动的夹角的增大而减小D两
14、个分运动夹角大于120,合速度的大小等于分速度(3)小船在静水中的速度是v,今小船要渡过一河流,渡河时小船朝对岸垂直划行,若航行至中心时,水流速度突然增大,则渡河时间将( )A增大 B减小 C不变 D无法确定小结:这节课我们学习的主要内容是探究曲线运动的基本方法运动的合成与分解。这种方法在应用过程中遵循平行四边形定则,在实际的解题过程中,通常选择实际看到的运动为合运动,其他的运动为分运动。运动的合成与分解包括以下几方面的内容:速度的合成与分解;位移的合成与分解;加速度的合成与分解。合运动与分运动之间还存在如下的特点:独立性原理:各个分运动之间相互独立,互不影响。等时性原理,合运动与分运动总是同
15、时开始,同时结束,它们所经历的时间是相等的。板书设计:5.3实验:研究平抛运动(3课时)三维教学目标1、知识与技能(1)理解平抛运动是匀变速运动,其加速度为g;(2)掌握抛体运动的位置与速度的关系。2、过程与方法(1)掌握平抛运动的特点,能够运用平抛规律解决有关问题;(2)通过例题分析再次体会平抛运动的规律。3、情感、态度与价值观(1)有参与实验总结规律的热情,从而能更方便地解决实际问题;(2)通过实践,巩固自己所学的知识。教学重点:分析归纳抛体运动的规律。教学难点:应用数学知识分析归纳抛体运动的规律。教学方法:探究、讲授、讨论、练习教具准备:平抛运动演示仪、自制投影片教学过程:第三节 实验:
16、研究平抛运动(一)新课导入上一节我们已经通过实验探究出平抛运动在竖直方向和水平方向上的运动规律,对平抛运动的特点有了感性认识。这一节我们将从理论上对抛体运动的规律作进一步分析,学习和体会在水平面上应用牛顿定律的方法,并通过应用此方法去分析没有感性认识的抛体运动的规律。(二)新课教学1、抛体的位置我们以平抛运动为例来研究抛体运动所共同具有的性质。首先我们来研究初速度为v的平抛运动的位置随时间变化的规律。用手把小球水平抛出,小球从离开手的瞬间(此时速度为v,方向水平)开始,做平抛运动,我们以小球离开手的位置为坐标原点,以水平抛出的方向为x轴的方向,竖直向下的方向为y轴的方向,建立坐标系,并从这一瞬
17、间开始计时。在抛出后的运动过程中,小球受力情况如何?(小球只受重力,重力的方向竖直向下,水平方向不受力。)那么,小球在水平方向有加速度吗,它将怎样运动?(小球在水平方向没有加速度,水平方向的分速度将保持v不变,做匀速直线运动。)那么,小球的运动就可以看成是水平和竖直两个方向上运动的合成。t时间内小球合位移是:若设s与+x方向(即速度方向)的夹角为,如图641,则其正切值如何求?2、抛体的速度由于运动的等时性,那么大家能否根据前面的结论得到物体做平抛运动的时间?这说明了什么问题?(这说明了平抛运动的水平位移不仅与初速度有关系,还与物体的下落高度有关)利用运动合成的知识,结合图642,求物体落地速
18、度是多大?结论如何?平抛运动常分解成水平方向和竖直方向的两个分运动来处理,由于竖直分运动是初速度为零的匀加速直线运动,所以初速度为零的匀加速直线运动的公式和特点均可以在此应用。另外,有时候根据具体情况也可以将平抛运动沿其他方向分解。3、斜抛运动如果物体抛出时的速度不是沿水平方向,而是斜向上方或斜向下方的(这种情况称为斜抛),它的受力情况是什么样的?加速度又如何?(它的受力情况与平抛完全相同,即在水平方向仍不受力,加速度仍是0;在竖直方向仍只受重力,加速度仍为g)实际上物体以初速度v沿斜向上或斜向下方抛出,物体只在重力作用下的运动,如何表示?与平抛是否相同?(斜抛运动沿水平方向和竖直方向初速度与
19、平抛不同,分别是vx=vcos和vy=sin)由于物体运动过程中只受重力,所以水平方向速度vx=vcos保持不变,做匀速直线运动;而竖直方向上因受重力作用,有竖直向下的重力加速度J,同时有竖直向上的初速度vy=sin,因此做匀减速运动(是竖直上抛运动,当初速度向斜下方,竖直方向的分运动为竖直下抛运动),当速度减小到。时物体上升到最高点,此时物体由于还受到重力,所以仍有一个向下的加速度g,将开始做竖直向下的加速运动。因此,斜抛运动可以看成是水平方向速度为vx=vcos的匀速直线运动和竖直方向初速度为vy=sin的竖直上抛或竖直下抛运动的合运动。斜抛运动分斜上抛和斜下抛(由初速度方向确定)两种,下
20、面以斜上抛运动为例讨论:斜抛运动的特点是什么?(特点:加速度a=g,方向竖直向下,初速度方向与水平方向成一夹角斜向上,90时为竖直上抛或竖直下抛运动=0时为平抛运动)常见的处理方法:第一、将斜上抛运动分解为水平方向的匀速直线运动和竖直方向的竖直上抛运动,这样有由此可以得到哪些特点?由此可得如下特点:a.斜向上运动的时间与斜向下运动的时间相等;b.从轨道最高点将斜抛运动分为前后两段具有对称性,如同一高度上的两点,速度大小相等,速度方向与水平线的夹角相同。第二、将斜抛运动分解为沿初速度方向的斜向上的匀速直线运动和自由落体运动两个分运动,用矢量合成法则求解。第三、将沿斜面和垂直斜面方向作为x、y轴,
21、分别分解初速度和加速度后用运动学公式解题。交流与讨论对于斜抛运动我们只介绍下船上抛和斜下抛的研究方法,除了平抛、斜上抛、斜下抛外,抛体运动还包括竖直上抛和竖直下抛,请大家根据我们研究前面几种抛体运动的方法来研究一下竖直上抛和竖直下抛。参考解答:对于这两种运动来说,它们都是直线运动,但这并不影响用运动的合成与分解的方法来研究它们。这个过程我们可以仿照第一节中我们介绍的匀加速运动的分解过程,对竖直上抛运动,设它的初速度为v0,那么它的速度就可以写成v= v0gt的形式,位移写成x= v0tg t22的形式。那这样我们就可以进行分解了。把速度写成v1= v0,v2=gt的形式,把位移写成xl= v0
22、t,x2= g t22的形式,这样我们可以看到,竖直上抛运动被分解成了一个竖直向上的匀速直线运动和一个竖直向上的匀减速运动。对于竖直下抛运动可以采取同样的方法进行处理。小结:(1)具有水平速度的物体,只受重力作用时,形成平抛运动。(2)平抛运动可分解为水平匀蓬运动和竖直自由落体运动平抛位移等于水平位移和竖直位移的矢量和;平抛瞬时速度等于水平速度和竖直速度的矢量和。(3)平抛运动是一种匀变速曲线运动。(4)如果物体受到恒定合外力作用,并且合外力跟初速度垂直,形成类似平抛的匀变速曲线运动,只需把公式中的g换成a,其中aF合m.说明:(1)干抛运动是学生接触到的第一个曲线运动,弄清其成固是基础,水平
23、初速度的获得是同题的关键,可归纳众两种;第一、物体被水平加速:水平抛出、水干射出、水平冲击等;第二、物体与原来水平运动的载体脱离,由于惯性而保持原来的水平速度。(2)平抛运动的位移公式和速度公式中有三个含有时间t,应根据不同的已知条件来求时间。但应明确:平抛运动的时间完全由抛出点到落地点的竖直高度确定(在不高的范国内g恒定),与抛出的速度无关。第四节 圆周运动(3课时)三维教学目标1、知识与技能(1)认识匀速圆周运动的概念,理解线速度的概念,知道它就是物体做匀速圆周运动的瞬时速度;理解角速度和周期的概念,会用它们的公式进行计算;(2)理解线速度、角速度、周期之间的关系:v=r=2rT;(3)理
24、解匀速圆周运动是变速运动。2、过程与方法(1)运用极限法理解线速度的瞬时性掌握运用圆周运动的特点如何去分析有关问题;(2)体会有了线速度后为什么还要引入角速度运用数学知识推导角速度的单位。3、情感、态度与价值观(1)通过极限思想和数学知识的应用,体会学科知识间的联系,建立普遍联系的观点;(2)体会应用知识的乐趣激发学习的兴趣。教学重点:线速度、角速度、周期的概念及引入的过程,掌握它们之间的联系。教学难点:理解线速度、角速度的物理意义及概念引入的必要性。教学方法:探究、讲授、讨论、练习教具准备:多媒体教学课件;用细线拴住的小球;实物投影仪。教学过程:(一)新课导入请同学观看两个物体所做的曲线运动
25、,并请注意观察它们的运动特点: 第一个:老师用事先准备好的用细线拴住的小球,演示水平面内的圆周运动;第二个:课件展示同学们熟悉的手表指针的走动(它们的轨迹是一个圆)这就是我们今天要研究的圆周运动。(二)新课教学行驶中的汽车轮子,公园里的“大转轮”,自行车上的各个转动部分。日常生活和生产实践中做圆周运动的物体可以说是“举不胜举”。同学们所列举的这些做圆周运动物体上的质点,哪些运动得较慢?哪些运动得更快?我们应该如何比较它们运动的快慢呢?下面就请同学们对自行车上的各个转动部分,围绕课本 “思考与讨论”中提出的问题,前后每四人一组进行讨论。交流与讨论开始讨论时,学生之间有激烈的争论,各人考虑的出发点
26、不一样,思考的角度不同。有人认为小齿轮、后轮上各点运动的快慢一样,因为它们是一起转动的;有人认为大齿轮、小齿轮各点运动的快慢一样,因为它们是用链条连在一起转动的,等等。这时需要老师的引导,你衡量快慢的标准是什么?你从哪个角度去进行比较的?引导学生过渡到对描述圆周运动快慢的物理量线速度的学习上来。1、线速度我们曾经用速度这个概念来描述物体做直线运动时的快慢,那么我们能否继续用这个概念来描述圆周运动的快慢呢?如果能,该怎样定义?下面就请同学们自主学习课本第45页上有关线速度的内容:给出阅读提纲,学生先归纳,然后师生互动加深学习。阅读提纲: 线速度的物理意义? 线速度的定义(和直线运动中速度定义的比
27、较)? 线速度的定义式? 线速度的瞬时性/自主阅读,积极思考,然后每四人一组进行讨论、交流,形成共识。线速度的物理意义反映了质点在单位时间内通过的弧长的多少。线速度是利用物体通过的弧长与所用时间的比值来定义的。线速度也是矢量,其运动过程中方向在不断变化着,因此要注意其瞬时性。匀速圆周运动的“匀速”,不是真正的匀速,而是指速度的大小不变结论:匀速圆周运动是一种变速运动。2、角速度教师出示课件展示手表指针的转动,提出问题:根据线速度的定义,请你比较手表指针中点和端点线速度的大小?同一根指针上不同的点,其线速度大小却不一样,而它们是应该有共同点的。因此这就需要我们去思考:描述圆周运动的快慢,除了用线
28、速度外,还有没有其他方法?阅读提纲:角速度的物理意义?角速度的定义?角速度的定义式?角速度能把同一物体上各点做圆周运动的共同点反映出来。角速度大反映了物体转动的快慢总结:(1)物理意义:描述质点转过的圆心角的快慢(2)定义:在匀速圆周运动中连接运动质点和圆心的半径转过的角度跟所用时间t的比值,就是质点运动的角速度(3)定义式:/t3、角速度的单位每接触一个新的物理量,我们都要关心它的物理单位是什么,那么线建度的单位是米秒,角速度的单位又是什么呢?下面就请同学们自主学习课本第46页上有关角速度的内容,课件投影出阅读提纲;怎样度量圆心角的大小?弧度这个单位是如何得到的?在计算时要注童什么?国际单位
29、制中,角速度的单位是什么?有人说,匀速圆周运动是线速度不变的运动,也是角速度不变的运动,这两种说法正确吗?为什么?总结:(1)圆心角的大小可以用弧长和半径的比值来描述,这个比值是没有单位的,为了描述问题的方便,我们“给”这个比值一个单位,这就是弧度。弧度不是通常煮义上的单位。计算时,不能将弧度带进算式中。(2)国际单位制中,角速度的单位是弧度秒(rads)。(3)这一句话是错误的,因为线速度是矢量,其方向在不断变化,匀速圆周运动是线速度大小不变的运动,后一句话是正确的,因为角速度是不变的(如果有学生提出角速度是矢量吗?教师可明确说是矢量,但高中阶段不研究其方向,而不能违背科学说角速度是标量)。
30、教材中还提到了描述圆周运动快慢的两种方法,它们是什么?单位如何?阅读教材第46页的有关内容,掌握转速和周期的概念。4、线速度与角速度的关系线速度和角速度都能描述圆周运动的快慢,它们之间有何关系呢?下面请同学们依据刚学过的线速度和角速度的概念和定义,推导出线速度和角速度的关系v=r点评:通过推导,加深对所学知识的理解,掌握知识间的联系到此,教师还需引导学生进一步思考;以上都能描述圆周运动快慢的线速度、角速度、转速和周期,除了有以上的联系外,还有没有不同的地方?如果学生通过讨论发现周期这一概念更能突显出圆周运动的周期性和重复性,将使学生对圆周运动有进一步的认识。板书设计:第四节 圆周运动1、描述匀
31、速圆周运动的有关物理量(1)线速度1.定义:做圆周运动的物体通过的弧长与所用时间的比值2.公式:v=l/t单位:m/s(s是弧长非位移)3.物理意义:(2)角速度1.定义:做圆周运动的物体的半径扫过的角度与所用时间的比值2.公式:/t3.单位:rads4.物理意义:(3)转速和周期2、线速度,角速度、周期间的关系 v=r=2rT =2T5.5向心加速度(2课时)三维教学目标1、知识与技能(1)理解速度变化量和向心加速度的概念;(2)知道向心加速度和线速度、角速度的关系式;(3)能够运用向心加速度公式求解有关问题。2、过程与方法:体会速度变化量的处理特点,体验向心加速度的导出过程,领会推导过程中
32、用到的数学方法,教师启发、引导,学生自主阅读、思考、讨论、交流学习成果。3、情感、与价值观:培养学生思维能力和分析问题的能力,培养学生探究问题的热情,乐于学习的品质。特别是“做一做”的实施,要通过教师的引导让学生体会成功的喜悦。教学重点:理解匀速圆周运动中加速度的产生原因,掌握向心加速度的确定方法和计算公式。教学难点:向心加速度方向的确定过程和向心加速度公式的推导与应用。教学方法:探究、讲授、讨论、练习教具准备:多媒体辅助教学设备等教学过程:第五节 向心加速度(一)新课导入通过前面的学习,我们已经知道,做曲线运动的物体速度一定是变化的。即使是我们上一堂课研究的匀速圆周运动,其方向仍在不断变化着
33、。换句话说,做曲线运动的物体,一定有加速度。圆周运动是曲线运动,那么做圆周运动的物体,加速度的大小和方向如何确定呢?这就是我们今天要研究的课题。(二)新课教学1、感知加速度的方向请同学们看两例:(展示多媒体动态投影图6.61和图6.62)并提出问题。(1)图6.61中的地球受到什么力的作用?这个力可能沿什么方向?(感觉上应该受到指向太阳的引力作用)(2)图6.62中的小球受到几个力的作用?这几个力的合力沿什么方向?(小球受到重力、支持力和绳子的拉力三个力的作用,其合力即为绳子的拉力,其方向指向圆心。)可能有些同学有疑惑,即我们这节课要研究的是匀逮圆周运动的加速度,可是上两个例题却在研究物体所受
34、的力,这不是“南辕北辙”了吗?(根据牛顿第二定律可知,知道了物体所受的合外力,就可以知道物体的加速度,可能是通过力来研究加速度吧。)我们之前没有研究过曲线运动的加速度问题,特别是加速度的方向较难理解,而牛顿第二定律告诉我们,物体的加速度方向总是和它的受力方向一致,这个关系不仅对直线运动正确,对曲线运动也同样正确。所以先通过研究力来感知加速度,特别是加速度的方向。但我们具体研究时仍要根据加速度的定义来进行,为了进一步增加感性认识,请同学们再举出几个类似的做圆周运动的实例,并就刚才讨论的类似问题进行说明。做匀速圆周运动的物体所受的力或合外力指向圆心,所以物体的加速度也指向圆心,是不是由此可以得出结
35、论:“任何物体做匀速圆周运动的加速度都指向圆心”?暂时不能,因为上面只研究了有限的实例,还难以得出一般性的结论。然而,这样的研究十分有益,因为它强烈地向我们提示了问题的答案,给我们指出了方向。下面我们将对圆周运动的加速度方向作一般性的讨论。2、速度变化量请同学们阅读教材“速度变化量”部分,同时在练习本上画出物体加速运动和减速运动时速度变化量v的图示,思考并回答问题:速度的变化量v是矢量还是标量?如果初速度v1和末速度v2不在同一直线上,如何表示速度的变化量v?认真阅读教材,思考问题,在练习本上画出物体加速运动和减速运动时速度变化量的图示。每小组4人进行交流和讨论:如果初速度v1和末速度v2不在
36、同一直线上,如何表示速度的变化量v?3、向心加速度请同学们阅读教材“向心加速度”部分,分析投影图6.66并思考以下问题:结论:当t很小很小时,v指向圆心。上面的推导不涉及“地球公转“小球绕图钉转动”等具体的运动,结论具有一般性:做匀速圆周运动的物体加速度指向圆心,这个加速度称为向心加速度。匀速圆周运动的加速度方向明确了,它的大小与什么因素有关呢?下面请大家按照课本第5l页“做一做”栏目中的提示,在练习本上推导出向心加速度的表达式。也就是下面这两个表达式:aN=v2/r , aN=r2思考与讨论:引导学生思考并完成课本第5l页“思考与讨论”栏目中提出的问题,可将同一观点的学生编为一组,不同组之间
37、进行辩论,深化本节课所学的内容。板书设计:第五节 向心加速度1、感知做匀速圆周运动的物体加速度的方向2、速度变化量的求法3、向心加速度(1)名称的由来(2)表达式:aN=v2/r , aN=r2(3)对两种表达式的比较、分析5.6向心力(3课时)三维教学目标1、知识与技能(1)理解向心力的概念及其表达式的确切含义;(2)知道向心力大小与哪些因素有关,并能用来进行计算;(3)知道在变速圆周运动中,可用上述公式求质点在某一点的向心力和向心加速度。2、过程与方法(1)通过用圆锥摆粗略验证向心力的表达式的实验来了解向心力的大小与哪些因素有关,并具体“做一做”来理解公式的含义。(2)进一步体会力是产生加
38、速度的原因,并通过牛顿第二定律来理解匀速圆周运动、变速圆周运动及一般曲线运动的各自特点。3、情感、态度与价值观(1)在实验中,培养学生动手的习惯并提高分析问题、解决问题的能力。(2)感受成功的快乐,体会实验的意义,激发学习物理的兴趣。教学重点:体会牛顿第二定律在向心力上的应用;明确向心力的意义、作用、公式及其变形。教学难点:圆锥摆实验及有关物理量的测量;如何运用向心力、向心加速度的知识解释有关现象。教学方法:探究、讲授、讨论、练习教具准备:多媒体课件、圆锥摆等实验设备教学过程:第六节 向心力(一)新课导入前面两节课,我们学习、研究了圆周运动的运动学特征,知道了如何描述圆周运动,这节课我们再来学
39、习物体做圆周运动的动力学特征向心力。(二)新课教学1、向心力请同学们阅读教材“向心力”部分,思考并回答以下问题:(1)举出几个物体做圆周运动的实例,说明这些物体为什么不沿直线飞去。(2)用牛顿第二定律推导出匀速圆周运动的向心力表达式。认真阅读教材,列举并分析实例,体会向心力的作用效果,并根据牛顿第二定律推导出匀速圆周运动的向心力表达式。交流与讨论请同学们交流各自的阅读心得并进行相互间的讨论。圆周运动是变速运动,有加速度,故做圆周运动的物体一定受到力的作用,而我们知道做匀速圆周运动的物体具有向心加速度,根据牛顿第二定律,这个加速度一定是由于它受到了指向圆心的合力的作用,这个合力叫做向心力,下面请
40、同学们把刚才由牛顿第二定律推出的向心力的表达式展示出来。向心力表达式:FN=mv2/r , FN=mr22、实验:用圆锥摆粗略验证向心力的表达式实验与探究:请同学们阅读教材“实验”部分,思考下面的问题:(1)实验器材有哪些?(2)简述实验原理,怎样达到验证的目的?(3)实验过程中要注意什么?如何保证小球在水平面内做稳定的圆周运动,测量哪些物理量,记录哪些数据?(4)实验过程中产生误差的原因主要有哪些?认真阅读教材,思考问题,找学生代表发言,听取学生的见解,点评、总结。交流与讨论:实验的过程中,多项测量都是粗略的,存在较大的误差,用两个方法得到的力并不严格相等。通过实验还体会到,向心力并不是像重
41、力、弹力、摩擦力那样具有某种性质的力来命名的,它是效果力,是按力的效果名的,在圆锥摆实验中,向心力是小球重力和细线拉力的合力,还可以理解为是细线拉力在水平面内的一个分力。我有一个改进的实验,其装置如图6.71所示,让小球在刚好要离开锥面的情况下做匀速圆周运动,我认为利用该装置可以使测量值减少误差。课堂训练说明以下几个圆周运动的实例中向心力是由哪些力提供的?(1)绳的一端拴一小球,手执另一端使小球在光滑水平面上做匀速圆周运动?(2)火星绕太阳运转的向心力是什么力提供的?(3)在圆盘上放一个小物块,使小物块随圆盘一起做匀速圆周运动,分析小物块受几个力,向心力由谁提供?3、变速圆周运动和一般曲线运动
42、在刚才“做一做”的实验中,我们可以通过抡绳子来调节沙袋速度的大小,这就给我们带来一个疑问:难道向心力能改变速度的大小吗?为什么?(不能。因为我刚才做实验时发现,当我的手保持不动时,沙袋的速度并不能改变,只有当我的手在动时,沙袋的速度才能改变,所以不能。但具体细节我还没有搞清)对于做一般曲线运动的物体,我们可以用怎样的分析方法进行简化处理?请同学们阅读教材并结合课本图6.74的提示发表自己的见解,同时再与刚才研究的变速圆周运动去进行对比。板书设计:第六节 向心力1、向心力(1)通过实例进一步感受做圆周运动的物体必须受到力的作用(2)向心力的概念(3)向心力的表达式2、向心力的实验验证(1)圆锥摆
43、的实验(2)向心力公式的实验讨论(“做一做”)3、变速圆周运动和一般曲线运动的研究5.7生活中的圆周运动(3课时)三维教学目标1、知识与技能(1)知道如果一个力或几个力的合力的效果是使物体产生向心加速度,它就是圆周运动的物体所受的向心力会在具体问题中分析向心力的来源。(2)能理解运用匀速圆周运动的规律分析和处理生产和生活中的具体实例。(3)知道向心力和向心加速度的公式也适用于变速圆周运动,会求变速圆周运动中物体在特殊点的向心力和向心加速度。2、过程与方法(1)通过对匀速圆周运动的实例分析,渗透理论联系实际的观点,提高学生分析和解决问题的能力。(2)通过匀速圆周运动的规律也可以在变速圆周运动中使
44、用,渗透特殊性和一般性之间的辩证关系,提高学生的分析能力。(3)通过对离心现象的实例分析,提高学生综合应用知识解决问题的能力。3、情感、态度与价值观(1)通过对几个实例的分析,使学生明确具体问题必须具体分析,理解物理与生活的联系,学会用合理、科学的方法处理问题。(2)通过离心运动的应用和防止的实例分析使学生明白事物都是一分为二的,要学会用一分为二的观点来看待问题。(3)养成良好的思维表述习惯和科学的价值观。教学重点:理解向心力是一种效果力;在具体问题中能找到是谁提供向心力的,并结合牛顿运动定律求解有关问题。教学难点:具体问题中向心力的来源;关于对临界问题的讨论和分析;对变速圆周运动的理解和处理
45、。教学方法:探究、讲授、讨论、练习教具准备:多媒体课件教学过程:第七节 生活中的圆周运动(一)新课导入复习提问:请同学们回顾并叙述出对于圆周运动你已经理解和掌握了哪些基本知识?(用线速度、角速度、转速和周期等来描述做圆周运动物体的运动快慢;知道了圆周运动一定是变速运动,一定具有加速度;掌握了对于圆周运动的有关问题还必须通过运用牛顿第二定律去认真分析和处理。)(二)新课教学1、铁路的弯道提出问题:火车受几个力作用?这几个力的关系如何?火车受到4个力的作用,各为两对平衡力,即合外力为零。其中重力和支持力的合力为零,牵引力和摩擦力的合力为零,那火车转弯时情况会有何不同呢?提出问题:(1)转弯与直线前
46、进有何不同?(2)画出受力示意图,并结合运动情况分析各力的关系?(转弯时火车的速度方向在不断变化,故其一定有加速度,其合外力一定不为零。)转弯时合外力不为零,即需要提供向心力,而平直路前行不需要,那么火车转弯时是如何获得向心力的?进一步受力分析得:需增加的一个向心力(效果力),由铁轨外轨的轮缘和铁轨之间互相挤压而产生的弹力提供。问题:挤压的后果会怎样?(由于火车质量、速度比较大,故所需向心力也很大。这样的话,轮缘和铁轨之间的挤压作用力将很大,导致的后果是铁轨容易损坏,轨缘也容易损坏。)那么应该如何解决这一实际问题,结合学过的知识加以讨论,提出可行的解决方案,并画出受力图,加以定性说明。交流与讨论:学生发挥自己的想象能力,结合知识点设计方案,结合受力图发表自己的见解 如图6.8l所示:(火车受的重力和支持力的合力提供向心力,对内外轨都无挤压,这样就达到了保护铁轨的目的。)请同学们运用刚才的分析进一步讨论:实际的铁路上为什么