收藏 分销(赏)

《方程的根与函数的零点》的教学设计.doc

上传人:仙人****88 文档编号:5781953 上传时间:2024-11-19 格式:DOC 页数:8 大小:647KB 下载积分:10 金币
下载 相关 举报
《方程的根与函数的零点》的教学设计.doc_第1页
第1页 / 共8页
《方程的根与函数的零点》的教学设计.doc_第2页
第2页 / 共8页


点击查看更多>>
资源描述
《方程的根与函数的零点》的教学设计 湖北省黄冈市团风中学 胡建平 教材分析 本节课选自《普通高中课程标准实验教课书数学I必修本(A版)》的第三章3.1.1方程的根与函数的的零点。 函数与方程是中学数学的重要内容,既是初等数学的基础,又是出等数学与高等数学的连接纽带。在现实生活实践中,函数与方程都有着十分的应用,在注重理论与实践相结合的今天,有着无可替代的作用,在加上函数与方程还是中学数学四大数学思想之一。因此函数与方程在高一乃止整个高中数学教学中,占有非常重要的地位。 本节要求学生通过对二次函数的图象的研究,去判断一元二次方程根的存在性以及根的个数,近而了解函数的零点与一元二次方程根的联系。它既揭示了初中两大知识方程与函数的内在联系,也是对本章函数知识的加深与总结。也是对函数知识的总深拓展,把函数在解方程中加以应用,从而还可以渗透中学的重要数学思想:方程与函数的思想,数形结合的思想。为学好中学数学打下一个良好基础。因此教好本节是至关重要的。 学生分析 程度差异性:中等程度的学生占大多数,程度教高的学生与程度差的学生占少数。 知识、心理、能力储备:学生在次之前已经学习了函数的图象和性质,特别对二次函数有较深的认识,基本会画简单函数的图象,也会通过图象去研究理解函数的性质,这就为学生理解函数的零点提供了帮助,初步的数形结合知识也足以让学生直观理解函数零点的存在性,因此从学生熟悉的二次函数的图象入手介绍函数的零点,从认知规律上讲,应该是容易理解的。一元二次方程是初中的重要内容,学生应该有较好的基础对于它根的个数以及存在性学生比较熟悉,学生理解起来没有多大问题。这也为我们归纳函数的零点与方程的根联系提供了知识基础。但是学生对其他函数的图象与性质认识不深(比如三次函数),对于高次方程还不熟悉,我们缺乏更多类型的例子,让学生从特殊到一般归纳出函数与方程的内在联系,因此理解函数的零点、函数的零点与方程根的联系应该是学生学习的难点。加之函数零点的存在性的判定方法的表数抽象难懂。因此在教学中应加强师生互动,尽多的给学生动手的机会,让学生在实践中体验二者的联系。并充分提供不同类型的二次函数和相应的一元二次方程让学生研讨,从而直观地归纳、总结、分析出二者的联系。教学中还应创设问题情景,激发学生探究兴趣,并引导学生观察、计算、思考从而达到教学目标。 教学目标 知识和技能目标:掌握函数零点的概念;了解函数零点与方程根的关系;学会在某区间上图象连续的函数存在零点的判定方法。 过程与方法:由二次函数的图象与x轴的交点的横坐标和对应的一元二次方程为突破口,探究方程的根与函数的零点的关系,以探究的方法发现在某区间上图象连续的函数存在零点的判定方法;在课堂探究中体会数形结合的数学思想,从特殊到一般的归纳思想。 情感、态度、价值观:在函数与方程的联系中体验数学中的转化思想的意义和价值.在教学中让学生体验探究的过程、发现的乐趣,在数学教学中培养学生的辨证思维的思想,以及分析问题解决问题的能力。 重点难点 重点:函数零点与方程根之间的关系;连续函数在某区间上存在零点的判定方法。 难点:发现与理解方程的根与函数零点的关系;探究发现函数存在零点的方法。 教学程序与环节设计: 创设情境 组织探究 尝试练习 探索研究 作业回馈 课外活动 结合实际问题诱发兴趣,结合二次函数引入课题. 二次函数的零点及零点存在性的. 零点存在性为练习重点。 进一步探索函数零点存在性的判定。 重点放在零点的存在性判断及零点的确定上。 研究二次函数在零点、零点之内及零点外的函数值符号,并尝试进行系统的总结。 教学建议 分析教材设计意图,探讨教学规律; 探索合理教学思想,提出教学建议。 设计流程 一、 创设情景、引出问题 问题1:我国自行研制的某种弹道导弹以每小时5000米/每秒的速度发射,那么它几秒后可以击中地面目标。(不记空气阻力,重力加速度g=10 ) 让学生各自独立思考,并请两名不同解法的同学陈述自己的解法。不出意外应该有两种思路:思路一 先列出方程,由方程的解得到。 思路二 写出函数式,再令得到。 [师生互动] 师:思路一用一元二次方程的知识得到结果,而思路二用二次函数的知识得到了相同的结果,那么二者有没有关系?如果有,那又是什么关系? 生:一元二次方程的根等于对应二次函数图象与轴的焦点的横坐标。 师:再看下面的题目,从图象的角度直观的体验上述结论。 问题2:先来观察几个具体的一元二次方程的根及其相应的二次函数的图象: 方程与函数 方程与函数 方程与函数 [师生互动] 师:引导学生画图、观察图象与x轴交点的个数与方程的根的个数的关系;观察图象与x轴交点的横坐标与方程根的大小关系。并引出函数零点概念。 生:画图、思考、并归纳出结论:函数图象与x轴交点的个数等于对应方程根的个数;函数图象与轴的焦点的横坐标的大小与对应方程的根的大小相等。 设计意图------- 问题1以实际应用问题引入,以学生熟悉的感兴趣背景入题,不仅能激发学生的兴趣,又能激活学生的已学知识,为下一步的深入研究做好铺垫。问题2是几种不同的函数与方程,它既是几个特殊的函数与方程又具有很强的概括性,包括方程有两不相等的根、两相等的根、无根的情况,研究它们有利于培养学生思维的完整性,也为学生归纳方程与函 数的关系铺好了台阶。 二、 层层推进,组织探究 老师给出函数零点的定义:对于函数,把使成立的实数叫做函数的零点. 问题3:思考函数零点的概念,写出问题2中三个函数的零点?并填下表 函数 函数的零点 方程的根 设计意图------- 此问的设置一方面让学生理解函数零点的含义,另一方面通过对比让学生再次加深对二者关系的认识,使函数图象与x轴交点的横坐标到函数零点的概念转变变得更自然、更易懂。通过对比教学揭示知识点之间的密切关系。 师生共同观察、分析得出对函数零点的几点认识: (1) 函数的零点并不是“点”,它不是以坐标的形式出现。例如函数的零点为x=-1,3 (2) 函数零点的意义:函数的零点就是方程实数根,亦即函数 的图象与轴交点的横坐标. (3) 方程有实数根函数的图象与轴有交点函数有零点. (4) 函数零点的求法:可以解方程而得到(代数法);可以将它与函数的图象联系起来,并利用函数的性质找出零点.(几何法) 补充练习:求函数的零点(建议学生用两种方法做) 设计意图------ 巩固函数零点的求法,渗透二次以外的函数的零点情况。总结讨论二次函数的零点的存在情况 问题4:是不是所有的二次函数都有零点? [师生互动] 师:仅提出问题,不须做任何提示。 生:根据函数零点的意义探索研究二次函数的零点情况,并进行交流,总结概括形成结论. 二次函数的零点: 二次函数 . 1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点. 2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点. 3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点. 设计意图------ 本节的前半节一直以二次函数作为模本研究,此题是从特殊到一般的升华,也全面总结了二次函数零点情况,给学生一个清晰的解题思路。进而培养学生总结归纳能力。 零点存在性的探索: 问题5:(Ⅰ)观察二次函数的图象: 在区间上有零点吗?______; _______,_______, _____0(<或>). 思考:若<0,那么函数在上一定有零点吗? 在区间上有零点______; ____0(<或>). 思考:若,那么函数在[]上一定有零点吗? (Ⅱ)观察下面函数的图象 在区间上______(有/无)零点;_____0(<或>). 在区间上______(有/无)零点;_____0(<或>). 在区间上______(有/无)零点;_____0(<或>). _____0(<或>).在区间上______(有/无)零点? 0(<或>)。区间 思考:若函数满足,在区间上一定有零点吗? 若函数满足,在区间上一定有零点吗? 由以上两步探索,你可以得出什么样的结论? <师生共同总结>如果在区间上的图象是连续不断的一条曲线,并且有,那么函数在区间内有零点,即存在,使得,这个也就是方程的根。 理解:此性质成立的前提是图象是连续不断的一条曲线。 零点并不一定是唯一的,但一定存在。 是函数在区间内有零点的充分条件。但是若函数是一次、二次时,则是函数在区间内有零点的充要条件。 [师生互动] 师:怎样利用函数零点存在性定理,断定函数在某给定区间上是否存在零点. 生:分析函数,按提示探索,完成解答,并认真思考. 师:引导学生结合函数图象,分析函数在区间端点上的函数值的符号情况,与函数零点是否存在之间的关系. 生:结合函数图象,思考、讨论、总结归纳得出函数零点存在的条件,并进行交流、评析. 师:引导学生理解函数零点存在定理,分析其中各条件的作用. 设计意图------ 如何由函数零点的概念过度到函数零点的判定方法是本节课的难点,用数形结合的方法是最直观的,学生也是最易接受的。问题5的问题设计层层递进、层层加深。有助于学生理解概念,自己总结出函数零点的判定方法。这样设计不仅符合学生的认知特点,也无形中给学生灌输概念发生的从特殊到一般过程。 三、 例范研究 例1.求函数的零点个数.问题: 1)你可以想到什么方法来判断函数零点个数? 2)判断函数的单调性,由单调性你能得该函数的单调性具有什么特性? 例2.求函数,并画出它的大致图象. [师生互动] 师:引导学生探索判断函数零点的方法,指出可以借助计算机或计算器来画函数的图象,结合图象对函数有一个零点形成直观的认识. 生:借助计算机或计算器画出函数的图象,结合图象确定零点所在的区间,然后利用函数单调性判断零点的个数. 四、练习尝试 1.利用函数图象判断下列方程有没有根,有几个根: (1); (3) (4) 2.利用函数的图象,指出下列函数零点所在的大致区间: (1); (2); (3); (4). [师生互动] 师:多媒体演示;结合图象考察零点所在的大致区间与个数,结合函数的单调性说明零点的个数;让学生认识到函数的图象及基本性质(特别是单调性)在确定函数零点中的重要作用. 生:建议学生使用计算器求出函数的大致区间,培养学生的估算能力,也为下一节的用二分法求方程的近似解做准备。 五、 探索研究 1.已知,请探究方程的根.如果方程有根,指出每个根所在的区间(区间长度不超过1). 2.设函数. (1)利用计算机探求和时函数的零点个数; (2)当时,函数的零点是怎样分布的? 3.讨论:请大家给方程的一个解的大约范围,看谁找得范围更小? [师生互动] 师:把学生分成小组共同探究,给学生足够的自主学习时间,让学生充分研究,发挥其主观能动性。也可以让各组把这几个题做为小课题来研究,激发学生学习潜能和热情。老师用多媒体演示,直观地演示根的存在性及根存在的区间大小情况。 生:分组讨论,各抒己见。在探究学习中得到数学能力的提高,从小科学研究的素养。现代设计意图------ 数学教学的新理念,就是想法设法在教学中培养学生的创新能力和探究意识,本组探究题目就是为了培养学生的探究能力,此组题目具有较强的开放性,探究性,基本上可以达到上述目的。 六、 作业回馈 1. 教材P108习题3.1(A组)第1、2题; 2. 求下列函数的零点: (1); (2). 3.求下列函数的零点,图象顶点的坐标,画出各自的简图,并指出函数值在哪些区间上大于零,哪些区间上小于零: (1); (2). 七、 课外活动 课后讨论并总结函数零点求法要注意的问题;思考可以用求函数零点的方法求方程的近似解吗? 八、 教学建议 注意函数与实际问题的联系,体现数学建模的思想:我们生活在一个充满变化的多彩世界,其中存在大量问题可以通过体现变量关系的函数、方程模型得到解决,这就为函数的应 用的教学提供了大量的实际背景。教学内容围绕实际问题的讨论而展开,有利于揭示函数与方程之间的关系,能提高学生对函数与方程关系的认识与理解. 注意由浅入深、循序渐进地建立函数与方程的关系:对函数与方程的关系有一个逐步认识的过程,教材遵循了由浅入深、循序渐进的原则.分三步来展开这部分的内容.第一步,从学生认为较简单的一元二次方程与相应的二次函数入手,由具体到一般,建立一元二次方程的根与相应的二次函数的零点的联系,然后将其推广到一般方程与相应的函数的情形.第二步,在用二分法求方程近似解的过程中,通过函数图象和性质研究方程的解,体现函数与方程的关系.第三步,在函数模型的应用过程中,通过建立函数模型以及模型的求解,更全面地体现函数与方程的关系逐步建立起函数与方程的联系.本节只是函数与方程的关系建立的第一步,教学中切忌面面具到,延展太深。 恰当使用信息技术:本节的教学中应当充分使用信息技术。实际上,一些内容因为涉及大数字运算、大量的数据处理、超越方程求解以及复杂的函数作图,因此如果没有信息技术的支持,教学是不容易展开的。因此,教学中应当加强信息技术的使用力度。合理使用多媒体和计算器。 参考资料: 1、函数与方程思想在数学解题中的应用 袁桂珍 广西教育 2004、3. 2、函数与方程思想的应用 胡榴宝 中学数学教学 2003、3. 8
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服