资源描述
第二十六章 反比例函数 期末复习教案
一、复习目标
1、经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念
2、培养学生从函数图象中获取信息的能力,探索并理解反比例函数的主要性质。
重点难点分析:重点:反比例函数的概念及性质。 难点:反比例图像的性质
二、复习过程
★知识点回顾、
1.反比例函数的概念:一般地, (k为常数,k≠0)叫做反比例函数,即y是x的反比例函数。(x为自变量,y为因变量,其中x不能为零)
反比例函数的等价形式:y是x的反比例函数 ←→ ←→ ←→ ←→ 变量y与x成反比例,比例系数为k.
2.反比例函数的图像和性质:
(1)图象特征:①由两条曲线组成,叫做 ③图象是以 为对称中心的中心对称图形.
(2)当k>0时,双曲线的两支分别位于 象限;在每个象内,y随x的 ;
当k<0时,双曲线的两支分别位于 象限;在每个象限内,y随x的 ;
(3)双曲线的两支会无限接近坐标轴( ),但不会与 。
3.反比例函数图象的几何特征:(如图1所示)
P
B
A
O
P
B
A
O
图1
(1)点P(x,y)在双曲线上都有
(2)面积不变性
长方形面积 ︳mn︱ =︳K︱
4. 反比例函数的实际应用
用反比例函数解决实际问题的一般步骤:
(1)审题,找出题中变量之间的关系(2)建立反比例函数的模型(3)利用反比例函数的图像和性质解题。
★知识点运用:
反比例图像性质
例1正比例函数y=x与反比例函数y=的图象相交于A、C两点.AB⊥x轴于B,CD⊥y轴于D(如图),则四边形ABCD的面积为_______________
巩固练习
1.(2014•湘潭)如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=( )
A.
3
B.
4
C.
5
D.
6
2.(2014•天水)如图,点A是反比例函数y=的图象上﹣点,过点A作AB⊥x轴,垂足为点B,线段AB交反比例函数y=的图象于点C,则△OAC的面积为 .
3.(2014•抚顺)如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会( )
A.
逐渐增大
B.
不变
C.
逐渐减小
D.
先增大后减小
4.(2014•遵义)如图,反比例函数y=(k>0)的图象与矩形ABCO的两边相交于E,F两点,若E是AB的中点,S△BEF=2,则k的值为 .
例2如图,已知A(n,-2),B(1,4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点,直线AB与y轴交于点C.
(1)求反比例函数和一次函数的关系式;
(2)求△AOC的面积;
(3)求不等式kx+b-<0的解集(直接写出答案)
例3(2014•东昌府区模拟)如图,已知:反比例函数(x<0)的图象经过点A(﹣2,4)、B(m,2),过点A作AF⊥x轴于点F,过点B作BE⊥y轴于点E,交AF于点C,连接OA.
(1)求反比例函数的解析式及m的值;
(2)若直线l过点O且平分△AFO的面积,求直线l的解析式.
巩固练习
1(2014•南通)如图,正比例函数y=﹣2x与反比例函数y=的图象相交于A(m,2),B两点.
(1)求反比例函数的表达式及点B的坐标;
(2)结合图象直接写出当﹣2x>时,x的取值范围.
2 ( 2014•广东)如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数y=(m≠0,x<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.
(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?
(2)求一次函数解析式及m的值;
(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.
反馈检测
1(2014•黔东南州)如图,正比例函数y=x与反比例函数y=的图象相交于A、B两点,BC⊥x轴于点C,则△ABC的面积为( )
A.
1
B.
2
C.
D.
2如图,点A是双曲线与直线y=-x-(k+1)在第二象限内的交点,AB⊥x轴于B,且S△ABO=.
(1)求这两个函数的解析式;
(2)求直线与双曲线的两个交点A、C的坐标
(3)x取何值时,一次函数的值大于反比例函数的值,
(4)求△AOC的面积.
扩展巩固
1.如图所示,在反比例函数y=(x>0)的图象上有点P1,P2,P3,P4,它们的横坐标依次为1,2,3,4.分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,则S1 +S2 +S3=________.
2(2014•孝感)如图,Rt△AOB的一条直角边OB在x轴上,双曲线y=经过斜边OA的中点C,与另一直角边交于点D.若S△OCD=9,则S△OBD的值为
3已知反比例函数和一次函数y=2x-1,其中一次函数的图象经过(a,b),(a+1,b+k)两点.
(1)求反比例函数的解析式;
(2)如图4,已知点A在第一象限,且同时在上述两个函数的图象上,求点A的坐标;
(3)利用(2)的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?若存在,把符合条件的P点坐标都求出来;若不存在,请说明理由.
6.(2014•天水)如图,点A是反比例函数y=的图象上﹣点,过点A作AB⊥x轴,垂足为点B,线段AB交反比例函数y=的图象于点C,则△OAC的面积为 2 .
考点:
反比例函数系数k的几何意义.菁优网版权所有
专题:
代数几何综合题.
分析:
由于AB⊥x轴,根据反比例函数k的几何意义得到S△AOB=3,S△COB=1,然后利用S△AOC=S△AOB﹣S△COB进行计算.
解答:
解:∵AB⊥x轴,
∴S△AOB=×|6|=3,S△COB=×|2|=1,
∴S△AOC=S△AOB﹣S△COB=2.
故答案为:2.
点评:
本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.
7.(2014•孝感)如图,Rt△AOB的一条直角边OB在x轴上,双曲线y=经过斜边OA的中点C,与另一直角边交于点D.若S△OCD=9,则S△OBD的值为 6 .
专题:
计算题.
分析:
过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.
解答:
解:如图,过C点作CE⊥x轴,垂足为E.
∵Rt△OAB中,∠OBA=90°,
∴CE∥AB,
∵C为Rt△OAB斜边OA的中点C,
∴CE为Rt△OAB的中位线,
∵△OEC∽△OBA,
∴=.
∵双曲线的解析式是y=,即xy=k
∴S△BOD=S△COE=|k|,
∴S△AOB=4S△COE=2|k|,
由S△AOB﹣S△BOD=S△AOD=2S△DOC=18,得2k﹣k=18,
k=12,
S△BOD=S△COE=k=6,
故答案为:6.
点评:
本题考查了反比函数k的几何意义,过图象上的任意一点作x轴、y轴的垂线,所得三角形的面积是|k|,是经常考查的知识点,也体现了数形结合的思想.
8.(2014•遵义)如图,反比例函数y=(k>0)的图象与矩形ABCO的两边相交于E,F两点,若E是AB的中点,S△BEF=2,则k的值为 8 .
考点:
反比例函数系数k的几何意义.菁优网版权所有
专题:
代数几何综合题.
分析:
设E(a,),则B纵坐标也为,代入反比例函数的y=,即可求得F的横坐标,则根据三角形的面积公式即可求得k的值.
解答:
解:设E(a,),则B纵坐标也为,
E是AB中点,所以F点横坐标为2a,代入解析式得到纵坐标:,
BF=﹣=,所以F也为中点,
S△BEF=2=,k=8.
故答案是:8.
点评:
本题考查了反比例函数的性质,正确表示出BF的长度是关键.
6.(2014•抚顺)如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会( )
A.
逐渐增大
B.
不变
C.
逐渐减小
D.
先增大后减小
考点:
反比例函数系数k的几何意义.菁优网版权所有
专题:
几何图形问题.
分析:
由双曲线y=(x>0)设出点P的坐标,运用坐标表示出四边形OAPB的面积函数关系式即可判定.
解答:
解:设点P的坐标为(x,),
∵PB⊥y轴于点B,点A是x轴正半轴上的一个定点,
∴四边形OAPB是个直角梯形,
∴四边形OAPB的面积=(PB+AO)•BO=(x+AO)•=+=+•,
∵AO是定值,
∴四边形OAPB的面积是个减函数,即点P的横坐标逐渐增大时四边形OAPB的面积逐渐减小.
故选:C.
点评:
本题主要考查了反比例函数系数k的几何意义,解题的关键是运用点的坐标求出四边形OAPB的面积的函数关系式.
15.(2014•南通)如图,正比例函数y=﹣2x与反比例函数y=的图象相交于A(m,2),B两点.
(1)求反比例函数的表达式及点B的坐标;
(2)结合图象直接写出当﹣2x>时,x的取值范围.
考点:
反比例函数与一次函数的交点问题.菁优网版权所有
专题:
数形结合.
分析:
(1)先把A(m,2)代入y=﹣2x可计算出m,得到A点坐标为(﹣1,2),再把A点坐标代入y=可计算出k的值,从而得到反比例函数解析式;利用点A与点B关于原点对称确定B点坐标;
(2)观察函数图象得到当x<﹣1或0<x<1时,一次函数图象都在反比例函数图象上方.
解答:
解:(1)把A(m,2)代入y=﹣2x得﹣2m=2,解得m=﹣1,
所以A点坐标为(﹣1,2),
把A(﹣1,2)代入y=得k=﹣1×2=﹣2,
所以反比例函数解析式为y=﹣,
点A与点B关于原点对称,
所以B点坐标为(1,﹣2);
(2)当x<﹣1或0<x<1时,一次函数图象都在反比例函数图象上方,﹣2x>.
点评:
本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.
26.(2014•广东)如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数y=(m≠0,x<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.
(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?
(2)求一次函数解析式及m的值;
(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.
考点:
反比例函数与一次函数的交点问题.菁优网版权所有
专题:
代数几何综合题.
分析:
(1)根据一次函数图象在上方的部分是不等式的解,观察图象,可得答案;
(2)根据待定系数法,可得函数解析式;
(3)根据三角形面积相等,可得答案.
解答:
解:(1)由图象得一次函数图象在上的部分,﹣4<x<﹣1,
当﹣4<x<﹣1时,一次函数大于反比例函数的值;
(2)设一次函数的解析式为y=kx+b,
y=kx+b的图象过点(﹣4,),(﹣1,2),则
,
解得
一次函数的解析式为y=x+,
反比例函数y=图象过点(﹣1,2),
m=﹣1×2=﹣2;
(3)连接PC、PD,如图,
设P(x,x+)
由△PCA和△PDB面积相等得
××(x+4)=×|﹣1|×(2﹣x﹣),
x=﹣,y=x+=,
∴P点坐标是(﹣,).
点评:
本题考查了反比例函数与一次函数的交点问题,利用了函数与不等式的关系,待定系数法求解析式.
18.(2014•东昌府区模拟)如图,已知:反比例函数(x<0)的图象经过点A(﹣2,4)、B(m,2),过点A作AF⊥x轴于点F,过点B作BE⊥y轴于点E,交AF于点C,连接OA.
(1)求反比例函数的解析式及m的值;
(2)若直线l过点O且平分△AFO的面积,求直线l的解析式.
考点:
反比例函数与一次函数的交点问题.菁优网版权所有
专题:
计算题.
分析:
(1)先把A(﹣2,4)代入y=可求出k=﹣8,则可确定反比例函数的解析式为y=﹣,然后把B点坐标代入即可求出m的值;
(2)根据A、B两点坐标先求出C点坐标(﹣2,2),于是得到C点为AF的中点,则直线l过C点,然后利用待定系数法求出直线l的解析式.
解答:
解:(1)把A(﹣2,4)代入y=得k=﹣2×4=﹣8,
∴反比例函数的解析式为y=﹣,
把B(m,2)代入y=﹣得,2m=﹣8,解得m=﹣4;
(2)∵A点坐标为(﹣2,4)、B点坐标为(﹣4,2),
而AF⊥x轴,BE⊥y轴,
∴C点坐标为(﹣2,2),
∴C点为AF的中点,
∵直线l过点O且平分△AFO的面积,
∴直线l过C点,
设直线l的解析式为y=kx(k≠0),
把C(﹣2,2)代入y=kx得2=﹣2k,解得k=﹣1,
∴直线l的解析式为y=﹣x.
点评:
本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两函数的解析式.也考查了待定系数法求函数的解析式.
解:(1)得
②-①得k=2
∴反比例函数的解析式为;
(2)由,解得,,
∵点A在第一象限,
∴点A的坐标为(1,1);
(3),OA与x轴所夹锐角为45°,
①当OA为腰时,由OA=OP得P1(,0),P2(-,0);
由OA=AP得P3=(2,0);
②当OA为底时,得P4=(1,0),
∴符合条件的点有4个,分别是(,0),(-,0),(2,0),(1,0)。
展开阅读全文