收藏 分销(赏)

中考中与不等式结合函数有关的经济类型题.doc

上传人:仙人****88 文档编号:5765655 上传时间:2024-11-19 格式:DOC 页数:5 大小:68.50KB 下载积分:10 金币
下载 相关 举报
中考中与不等式结合函数有关的经济类型题.doc_第1页
第1页 / 共5页
中考中与不等式结合函数有关的经济类型题.doc_第2页
第2页 / 共5页


点击查看更多>>
资源描述
中考中与不等式结合函数有关的经济类型题 例1 已知雅美服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M,N两种型号的时装共80套。已知做一套M型号的时装需要A种布料0.6米,B种布料0.9米,可获利润45元;做一套N型号的时装需要A种布料1.1米,B种布料0.4米,可获利润50元。若设生产N种型号的时装套数为,用这批布料生产这两种型号的时装所获总利润为元。 (1)求与的函数关系式,并求出自变量的取值范围; (2)雅美服装厂在生产这批服装中,当N型号的时装为多少套时,所获利润最大?最大利润是多少? 例2 某市电话的月租费是20元,可打60次免费电话(每次3分钟),超过60次后,超过部分每次0.13元。 (1)写出每月电话费(元)与通话次数之间的函数关系式; (2)分别求出月通话50次、100次的电话费; (3)如果某月的电话费是27.8元,求该月通话的次数。 例3 荆门火车货运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往广州,这列货车可挂A、B两种不同规格的货厢50节,已知用一节A型货厢的运费是0.5万元,用一节B型货厢的运费是0.8万元。 (1)设运输这批货物的总运费为(万元),用A型货厢的节数为(节),试写出与之间的函数关系式; (2)已知甲种货物35吨和乙种货物15吨,可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排A、B两种货厢的节数,有哪几种运输方案?请你设计出来。 (3)利用函数的性质说明,在这些方案中,哪种方案总运费最少?最少运费是多少万元? 例4 某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品,共50件。已知生产一件A种产品,需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B种产品,需用甲种原料4千克、乙种原料10千克,可获利润1200元。 (1)按要求安排A、B两种产品的生产件数,有哪几种方案?请你设计出来; (2)设生产A、B两种产品获总利润为(元),生产A种产品件,试写出与之间的函数关系式,并利用函数的性质说明(1)中哪种生产方案获总利润最大?最大利润是多少? 例5 某地上年度电价为0.8元,年用电量为1亿度。本年计划将电价调至0.55~0.75元之间,经测算,若电价调至元,则本年度新增用电量(亿度)与(元)成反比例,又当=0.65时,=0.8。 (1)求与之间的函数关系式; (2)若每度电的成本价为0.3元,则电价调至多少元时,本年度电力部门的收益将比上年度增加20%?[收益=用电量×(实际电价 -成本价)] 例6 为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过7立方米时,每立方米收费1.0元并加收0.2元的城市污水处理费,超过7立方米的部分每立方米收费1.5元并加收0.4元的城市污水处理费,设某户每月用水量为(立方米),应交水费为(元) (1)分别写出用水未超过7立方米和多于7立方米时,与之间的函数关系式; (2)如果某单位共有用户50户,某月共交水费514.6元,且每户的用水量均未超过10立方米,求这个月用水未超过7立方米的用户最多可能有多少户? 例7 辽南素以“苹果之乡”著称,某乡组织20辆汽车装运三种苹果42吨到外地销售。按规定每辆车只装同一种苹果,且必须装满,每种苹果不少于2车。 (1)设用辆车装运A种苹果,用辆车装运B种苹果,根据下表提供的信息求与之间的函数关系式,并求的取值范围; (2)设此次外销活动的利润为W(百元),求W与的函数关系式以及最大利润,并安排相应的车辆分配方案。 苹果品种 A B C 每辆汽车运载量 (吨) 2.2 2.1 2 每吨苹果获利 (百元) 6 8 5 同学们,从以上几例的解答过程中,你学到了解决这类问题的基本思路和方法吗?                 确定函数解析式,求函数值                 确定自变量取值范围 实际问题――――――数学问题  方案设计:利用不等式或不等式组及题意                 方案决策:                 最优方案:利用一次函数的性质及自变量 取值范围确定最优方案 解决问题―――――――――――――――――― 小结:    次函数应用题例析       一次函数是初中数学中的重点内容之一,设计一次函数模型解决实际问题,备受各地命题者的青睐.本文采撷几例中考试题加以评析,供参考.   一、图象型   例1 (2003年广西)在抗击“非典”中,某医药研究所开发了一种预防“非典”的药品.经试验这种药品的效果得知:当成人按规定剂量服用该药后1小时时,血液中含药量最高,达到每毫升5微克,接着逐步衰减,至8小时时血液中含药量为每毫升1.5微克.每毫升血液中含药量y(微克)随时间x(小时)的变化如图所示.在成人按规定剂量服药后:   (1)分别求出x≤1,x≥1时y与x之间的函数关系式;   (2)如果每毫升血液中含药量为2微克或2微克以上,对预防“非典”是有效的,那么这个有效时间为多少小时?   解析 本题涉及的背景材料专业性很强,但只要读懂题意,用我们学过的函数知识是不难解答的.题目的主要信息是由函数图象给出的,图象是由两条线段组成的折线,可把它看成是两个一次函数图象的组合.      二、预测型   例2 (2002年辽宁省)随着我国人口增长速度的减慢,小学入学儿童数量有所减少,下表中的数据近似地呈现了某地区入学儿童人数的变化趋势,试用你所学的函数知识解决下列问题:   (1)求入学儿童人数y(人)与年份x(年)的函数关系式;   (2)利用所求函数关系式,预测该地区从哪一年起入学儿童的人数不超过1000人? 年份(x) 2000 2001 2002 … 入学儿童人数(y) 2520 2330 2140     解析 建立反比例函数,一次函数或二次函数模型,考察哪一种函数能较好地描述该地区入学儿童人数的变化趋势,这就要讨论.若设(k>0),在三点(2000,2520),(2001,2330),(2002,2140)中任选一点确定k值后,易见另两点偏离曲线较远,故反比例函数不能较好地反映入学儿童人数的变化趋势,从而选用一次函数.      三、决策型   例3 (2003年甘肃省)某工厂生产某种产品,每件产品的出厂价为1万元,其原材料成本价(含设备损耗等)为0.55万元,同时在生产过程中平均每生产一件产品有1吨的废渣产生.为达到国家环保要求,需要对废渣进行脱硫、脱氮等处理.现有两种方案可供选择.   方案一:由工厂对废渣直接进行处理,每处理1吨废渣所用的原料费为0.05万元,并且每月设备维护及损耗费为20万元.   方案二:工厂将废渣集中到废渣处理厂统一处理.每处理1吨废渣需付0.1万元的处理费.   (1)设工厂每月生产x件产品,每月利润为y万元,分别求出用方案一和方案二处理废渣时,y与x之间的函数关系式(利润=总收入-总支出);   (2)如果你作为工厂负责人,那么如何根据月生产量选择处理方案,既可达到环保要求又最合算.   解析 先建立两种方案中的函数关系式,然后根据月生产量的多少通过分类讨论求解.      四、最值型   例4 (2003年江苏省扬州市)杨嫂在再就业中心的支持下,创办了“润扬”报刊零售点,对经营的某种晚报,杨嫂提供了如下信息.   ①买进每份0.2元,卖出每份0.3元;   ②一个月(以30天计)内,有20天每天可以卖出200份,其余10天每天只能卖出120份.   ③一个月内,每天从报社买进的报纸份数必须相同,当天卖不掉的报纸,以每份0.1元退回给报社.   (1)填表: 一个月内每天买进该种晚报的份数 100 150 当月利润(单位:元)       (2)设每天从报社买进这种晚报x份(120≤x≤200)时,月利润为y元,试求y与x之间的函数关系式,并求月利润的最大值.   解析 (1)由题意,当一个月每天买进100份时,可以全部卖出,当月利润为300元;当一个月内每天买进150份时,有20天可以全部卖完,其余10天每天可卖出120份,剩下30份退回报社,计算得当月利润为390元.   (   五、学科结合型   例5 (2002年南京市)声音在空气中传播的速度y(m/s)(简称音速)是气温x(℃)的一次函数.下表列出了一组不同气温时的音速: 气温x(℃) 0 5 10 15 20 音速y(m/S) 331 334 337 340 343   (1)求y与x之间的函数关系式;(2)气温x=22(℃)时,某人看到烟花燃放5s后才听到声响,那么此人与燃放的烟花所在地约相距多远?   
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 考试专区 > 中考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服