1、抽象函数问题的“原型”解法抽象函数问题是学生学习中的一个难点,也是各种考试测评的热点问题之一。研究发现,由抽象函数结构、性质,联想已学过的基本函数,再由基本函数的相关结论,预测、猜想抽象函数可能有的相关结论,是使抽象函数问题获解的一种有效方法。所谓抽象函数,是指没有明确给出函数表达式,只给出它具有的某些特征或性质,并用一种符号表示的函数。由抽象函数构成的数学问题叫抽象函数问题,这类问题是学生学习中的一个难点,也是各种考试测评的热点问题之一。研究抽象函数问题的解法,对教师的教学,学生深刻理解并牢固掌握函数的相关内容,学好大纲规定的基本函数知识显得尤为重要。抽象来源于具体。抽象函数是由特殊的、具体
2、的函数抽象而得到的。如有可抽象为。那么=就叫做抽象函数满足的“原型”(函数),分析抽象函数问题的解题过程及心理变化规律可知,一般均是由抽象函数的结构,联想到已学过的具有相同或相似结构的某类(基本)“原型”函数,并由“原型”函数的相关结论,预测、猜想抽象函数可能具有的某种性质使问题获解的,称这种解抽象函数问题的方法为“原型”解法。下面给出中学阶段常用的“原型”(函数)并举例说明“原型”解法。知识梳理一、中学阶段常用抽象函数的“原型”(函数)1、 2、 3、 4、 5、或 6、 二、“原型”解法例析例题1.设函数满足,且()=0,、R;求证:为周期函数,并指出它的一个周期。变式训练:已知函数满足,
3、若,试求(2005)。例题2已知函数对于任意实数、都有,且当0时,0,(-1)=-2,求函数在区间-2,1上的值域。变式训练已知函数对于一切实数、满足(0)0,且当0时,1(1)当0时,求的取值范围(2)判断在R上的单调性例题3已知函数定义域为(0,+)且单调递增,满足(4)=1,(1)证明:(1)=0;(2)求(16);(3)若+ (-3)1,求的范围;(4)试证()=(nN)变式训练已知函数对于一切正实数、都有且1时,1,(2)=(1)求证:0; (2)求证:在(0,+)上为单调减函数(3)若=9,试求的值。综上所述,由抽象函数问题的结构特征,联想已学过的具有相同或相似结构的基本(原型)函数,并由基本函数的相关结构,预测、猜想抽象函数可能具有的性质 “抽象具体抽象”的“原型”联想思维方式,可使抽象函数问题顺利获解,且进一步说明,学生学好大纲规定的几种基本函数相关知识的重要性。自我反思 3用心 爱心 专心