1、 枣阳一中暑期数学精选训练试题答案一、选择题:CABAD CDBCD CB二、填空题 1345 1 (,)三. 解答题17. 解:()证明:连接DG,DC,设DC与GF交于点T.在三棱台中,则而G是AC的中点,DF/AC,则,所以四边形是平行四边形,T是DC的中点,DG/FC.又在,H是BC的中点,则TH/DB,zxyFDEAGBHC又平面,平面,故平面;()由平面,可得平面而则,于是两两垂直,以点G为坐标原点,所在的直线分别为轴建立空间直角坐标系,设,则,,则平面的一个法向量为,设平面的法向量为,则,即,取,则,故平面与平面所成角(锐角)的大小为.18.,EGFG,ACFG=G,EG平面AF
2、C,EG面AEC,平面AFC平面AEC. 6分()如图,以G为坐标原点,分别以的方向为轴,y轴正方向,为单位长度,建立空间直角坐标系G-xyz,由()可得A(0,0),E(1,0, ),F(1,0,),C(0,0),=(1,),=(-1,-,).10分故.所以直线AE与CF所成的角的余弦值为. 12分19.20.试题解析:()由题设可得,或,.,故在=处的到数值为,C在处的切线方程为,即.故在=-处的到数值为-,C在处的切线方程为,即. 故所求切线方程为或. 5分()存在符合题意的点,证明如下: 设P(0,b)为复合题意得点,直线PM,PN的斜率分别为. 将代入C得方程整理得. . =. 当时
3、,有=0,则直线PM的倾斜角与直线PN的倾斜角互补, 故OPM=OPN,所以符合题意. 12分考点:抛物线的切线;直线与抛物线位置关系;探索新问题;运算求解能力(21)(本小题满分12分)已知函数f(x)=.试题解析:()设曲线与轴相切于点,则,即,解得.因此,当时,轴是曲线的切线. 5分()当时,从而, 在(1,+)无零点. 当=1时,若,则,,故=1是的零点;若,则,,故=1不是的零点.当时,所以只需考虑在(0,1)的零点个数.()若或,则在(0,1)无零点,故在(0,1)单调,而,所以当时,在(0,1)有一个零点;当0时,在(0,1)无零点. ()若,则在(0,)单调递减,在(,1)单调递增,故当=时,取的最小值,最小值为=. 若0,即0,在(0,1)无零点. 若=0,即,则在(0,1)有唯一零点; 若0,即,由于,所以当时,在(0,1)有两个零点;当时,在(0,1)有一个零点.10分综上,当或时,由一个零点;当或时,有两个零点;当时,有三个零点. 12分考点:利用导数研究曲线的切线;对新概念的理解;分段函数的零点;分类整合思想22.