1、数 学一、课程理念、教育教学原则(一)彰显育人价值初中数学课程应全面贯彻党的教育方针,落实国家中长期教育改革和发展规划纲要(20102020年)和教育部关于全面深化课程改革落实立德树人根本任务的意见的有关要求;以义务教育数学课程标准(2011版)为依据,按照德育为先、能力为重、面向全体、个性发展的总要求,正确处理好面向全体学生与关注学生个体差异的关系,以学生发展为本,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展;遵循学生身心发展规律,结合数学学科特点,有机融入社会主义核心价值观教育和中华优秀传统文化教育,有意识地引导学生了解数学与人类发展的相互作用,体会数学的科学价值、文化
2、价值和应用价值,体会数学对于人类文明发展的贡献,培养学生的理性精神和科学精神,形成正确的世界观、人生观和价值观,充分彰显“数学育人”的价值。(二)发展核心素养初中数学教学要以发展学生数学核心素养为导向,帮助学生学会用数学眼光观察世界,用数学思维分析世界,用数学语言表达世界。要创设有利于学生数学核心素养发展的教学情境,引导学生把握数学本质,感悟数学思想。要根据数学学科的特点,发展运算能力、推理能力、空间观念、数据分析观念和模型思想,注重发展学生的应用意识和创新意识,关注数学概念的理解和解释,关注数学规则的选择和运用,关注数学问题的发现与解决,关注知识技能、数学思考、问题解决、情感态度等目标的整体
3、实现,使学生学会用数学眼光观察世界,用数学思维分析世界,用数学语言表达世界。通过初中数学学习,学生应能获得适应社会生活和进一步发展所必需的数学基础知识、基本技能、基本思想、基本活动经验;能体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题的能力、分析和解决问题的能力;了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯,具有初步的创新意识和科学态度。(三)突出数学本质初中数学应注重知识与素养两条主线的交融、协调,从整体上把握教学内容,突出数学本质,发挥各种能力和思想方法对初中数学知识的统摄作用,保持能力训练的逻辑连贯
4、性和思想方法的前后一致性。教学时要凸显不同知识、不同单元之间存在的实质性联系,关注内容主线之间的关联以及同一个内容主线中重要知识点之间的关联。注重知识背后的数学思想、方法的贯通,注重形、数之间的结合,引导学生进行学习内容逻辑线索的梳理,强化在数学实践活动中综合运用数学知识的能力。对重要的数学概念、定理以及思想方法要体现循序渐进、螺旋上升的原则,从整体性上形成解决问题的策略。(四)关注学习过程问题驱动、指引、贯穿了学生的数学学习过程。序列问题有助于学生理解概念、形成定理,有助于学生了解知识的来龙去脉,经历知识的发生和发现的过程,有助于发展学生的问题意识、探索精神。教师进行教学设计时,应根据教学目
5、标、教学内容、教学重点及难点,把主要学习内容转换成一个个有序的、层层递进的教学问题。问题应设置在学生思维的最近发展区。同时还应设置适当的发散性问题,培养学生的求异思维和创新能力。实际教学要激发学生兴趣,调动学生积极性,注重启发式,引导学生独立思考、主动探索、合作交流,正确处理好“预设”与“生成”的关系、合情推理与演绎推理的关系,培养学生良好的数学学习习惯,指导学生掌握恰当的数学学习方法。(五)融合信息技术信息技术的发展对数学教育的价值、目标、内容以及教学方式产生了很大的影响,改变了人的交流方式和学习方式。要充分考虑信息技术对数学学习内容和方式的影响,开发并向学生提供丰富的学习资源,把现代信息技
6、术作为学生学习数学和解决问题的有力工具,有效地改进教与学的方式,使学生乐意并有可能投入到现实的、探索性的数学活动中去。信息技术是手段,要服务于数学的课程目标。信息技术应用于数学课堂,使数学交流更适时、便捷,数学探究更直观、形象。要利用信息技术丰富学生的学习方式、促进数学理解,提高学习效率,教学中恰时恰点地应用信息技术,积极发挥信息技术在建构数学概念、发现数学结论、突破学习难点、改进教学方式、培养数学表达、传播数学技术等方面的作用。(六)建立多元评价学习评价的主要目的是为了全面了解学生数学学习的过程和结果,激励学生学习和改进教师教学。应建立目标多元、方法多样的评价体系。评价既要关注学生学习的结果
7、,也要重视学习的过程;既要关注学生数学学习的水平,也要重视学生在数学活动中所表现出来的情感与态度,帮助学生认识自我、建立信心。切实关注基础知识和基本技能的评价、数学思考和问题解决的评价、情感态度的评价,注重对学生数学学习过程的评价,体现评价主体的多元化和评价方式的多样性,恰当地呈现和利用评价结果,合理设计与实施书面测验。书面测试命题要减少单纯记忆、机械训练性质的内容,增强与学生生活、社会实际的联系,注重考查学生综合运用所学知识分析问题和解决问题的能力。通过各种评价得到的信息,了解学生数学学习达到的水平和存在的问题,帮助教师进行总结与反思,调整和改进教学内容和教学过程。二、课程实施(一)课程开设
8、、课时安排等要求。初中数学设置了“数与代数”,“图形与几何”,“统计与概率”,“综合与实践”四个部分的课程内容。第三学段七、八、九年级每周均开设5课时数学课,三年共592课时。其中“综合与实践”内容设置的目的在于培养学生综合运用有关数学的知识与方法解决实际问题,培养学生的问题意识,应用意识和创新意识,积累学生的活动经验,提高学生解决现实问题的能力。综合与实践是一类在教师指导下,以问题为载体、以学生自主参与为主的学习活动。“综合与实践”的活动可以渗透在数与代数、图形与几何、统计与概率等知识的教学中,也可以单独以课题活动形式开展活动。各地应该保证每学期至少开展一次以课题活动为主的综合与实践活动,这
9、种活动综合与实践可以在课堂上完成,也可以课内外相结合。(二)教学要求。数与代数数与式内容标准教学要求教学建议1.有理数(1)理解有理数的意义.通过具体案例说明引入有理数的必要性;通过具体实例理解相反意义的量的含义;用规范的数学符号表述具有相反意义的量;正确地读、写正、负数;正确理解“0”的两种意义(“没有”、“临界”);能对有理数进行正确的分类.(2)能用数轴上的点表示有理数.会用文字语言、符号语言解释、表述数轴的意义;通过学生熟悉的实例引入数轴,引导学生正确地画数轴(掌握三要素:原点、正方向、单位长度);能用数轴上的点表示有理数;能发现数轴上的点与有理数的对应关系,并能应用这种对应关系.(3
10、)能比较有理数的大小.通过实例引导学生概括有理数的大小比较法则的要点;能应用法则比较有理数的大小,能借助数轴比较有理数的大小.(4)借助数轴理解相反数的意义,掌握求有理数的相反数的方法.会用文字语言、符号语言、图形语言解释相反数的意义,初步了解数学三种语言的互译.如互为相反数;借助数轴用点表示相反数:两个互为相反数(除0外)在数轴上所表示的对应点,是在原点两旁,并且到原点距离相等,即两个互为相反数在数轴上表示的点关于原点对称;能正确、迅速地求常数或字母的相反数,如数的相反数是.(5)借助数轴理解绝对值的意义,掌握求有理数的绝对值的方法,知道的含义(这里a表示有理数).会用文字语言、符号语言、图
11、形语言解释、表述绝对值的意义.理解绝对值的代数意义和几何意义;能应用绝对值的意义求一个有理数的绝对值;已知一个有理数的绝对值,会求出这个有理数的值.在有理数有关概念教学过程,要适时、适当的渗透数学思想。如:有理数两种分类标准的对比、相反数概念、绝对值概念、有理数大小比较法则等内容教学中,体现分类思想;借助数轴的教学体会数形结合思想.;在有理数分类、有理数与数轴关系中,渗透集合与对应思想。(6)掌握有理数的加法运算.通过实例(如:在一条直线的两次运动;净胜球计算等)探究,了解加法法则的兼容性、合理性;通过典型加法运算例子概括加法法则的要点;能够应用加法法则正确、迅速地进行有理数加法运算.(7)掌
12、握有理数的减法运算.通过对具体实例的归纳,理解有理数的减法法则,初步了解转化思想;能用文字语言、符号语言准确地表述法则;能够应用有理数加、减法则和加法运算律正确、迅速地进行有理数加、减法的混合运算.(8)掌握有理数的乘法运算.通过类比、归纳研究有理数的乘法,了解乘法法则的兼容性、合理性;通过典型乘法运算例子概括乘法法则的要点;能够应用乘法法则正确、迅速地进行有理数乘法运算.(9)掌握有理数的除法运算.通过求一个非0数的倒数,理解倒数的概念;通过对具体实例的归纳,理解有理数的除法法则,进一步了解转化思想;能够应用有理数乘、除法则和乘法运算律正确、迅速地进行有理数除法运算及乘、除法的混合运算.(1
13、0)理解乘方的意义.通过从特殊到一般的抽象过程,引导学生理解乘方、幂、底数、指数的意义; 了解乘法和乘方,乘方和幂之间的关系;能够正确读、写“乘方”或“幂”,能清楚辨析出乘方的底数和指数,能分清含有幂的形式表示的代数式的运算顺序,并能正确表述;能应用乘方的意义正确、迅速地进行有理数的乘方运算(11)掌握有理数的加、减、乘、除、乘方的简单混合运算(以三步以内为主).理解有理数运算律,能运用运算律简化运算. 通过具体有理数运算例子,掌握有理数运算的顺序;能用符号语言准确地表示运算律,并解释定律表达式两侧表示的运算顺序;能够应用有理数运算法则,用规范的格式书写,正确、迅速地进行有理数的加、减、乘、除
14、、乘方简单的混合运算(以三步以内为主).能运用运算律简化有理数运算,提高有理数混合运算能力. (12)能运用有理数的运算解决简单的问题.能根据实际的问题列出相应的运算式并能正确地运算; 能依据算式、运算的结果对简单的实际问题进行定量、定性分析;适当控制应用题的难度,借培养应用题的读题能力提高学生的阅读能力和审题能力.1. 有理数运算是后续所有代数学习的基础,在教学中要注意与小学的同类运算类比衔接.2. 有理数运算过程重在引导学生理解算理和算法,养成先观察、分析算式的结构特征,建立数感、符号意识,然后再选择简便方法进行计算的解题习惯,优化运算策略.3. 应该在每一个恰当的时候都让学生感受有理数运
15、算的封闭性与合理性。2.实数(1)了解平方根、算术平方根的概念,会用根号表示数的平方根、算术平方根.通过生活实例引导学生理解算术平方根、被开方数的概念;能用文字语言和符号语言正确表示一个非负数的算术平方根;了解平方根、二次方根、开平方的概念;能用文字语言和符号语言表述一个非负数的平方根;理解二次根号所代表的运算;理解一个正数的两个平方根之间的关系.(2)了解立方根的概念,会用根号表示数的立方根.通过具体情境帮助学生了解立方根、开立方、根指数的概念;能用文字语言和符号语言正确表示一个数的立方根,并实现二者的相互转化;理解三次根号所代表的运算.(3)了解乘方与开方互为逆运算,会用平方运算求百以内整
16、数的平方根,会用计算器求平方根.在具体的数的平方与平方数的开平方运算中,了解开平方与平方互为逆运算;会用平方运算求100以内整数的平方根.通过乘方与开方的互逆运算关系,进一步体会转化思想.(4)会用立方运算求百以内整数(对应的负整数)的立方根,会用计算器求立方根.了解开立方与立方互为逆运算;会用立方运算求100以内整数(0-100之间整数)的立方根.(5)了解无理数和实数的概念,了解实数与数轴上的点一一对应.了解无理数和实数的概念,了解数系从有理数扩充到实数的必要性;通过将正无理数在数轴上表示引出负无理数,了解无理数与有理数的区别,并与有理数进行类比学习;能够对实数进行正确两种分类;知道实数与
17、数轴上的点一一对应.(6)能求实数的相反数与绝对值.能求常数(实数)的相反数与绝对值;能求字母(实数)的相反数.(7)能用有理数估计一个无理数的大致范围.熟记1.414, 1.732;能根据要求用有理数估计一个无理数的大致范围;能够正确比较两个实数的大小;通过估算,培养学生估算意识和能力,从而发展数感.(8)了解近似数的概念;在解决实际问题中,能用计算器进行近似计算,并按要求对结果取近似值.通过具体实例了解近似数的概念;能够按要求对结果取近似值;能用计算器进行近似计算.(9)了解二次根式的概念,借助现实情境了解代数式.认识二次根式:(a0),用规范格式书写二次根式;能用不等式说明当a0时,在实
18、数内有意义;了解0(a0)及()a(a0)的意义;了解二次根式的性质a(a0);(10)了解二次根式(根号下仅限于数)乘、除运算法则,会用它们进行有关的简单运算.了解二次根式乘、除运算法则的合理性;掌握法则操作的步骤;能正确、迅速地进行简单二次根式的乘、除的运算.(11)了解最简二次根式的概念会判断化简的结果是否为最简二次根式;在二次根式的运算中,能将运算的结果化为最简二次根式(12)了解二次根式(根号下仅限于数)加、减运算法则,会用它们进行有关的简单运算.在具体的二次根式加、减运算中,了解二次根式加、减运算法则的合理性;掌握运用法则操作的步骤;能综合运用法则进行简单二次根式的混合四则运算.能
19、运用多项式相乘(乘法公式)的法则计算有关二次根式的问题,理解实数之间可以进行四则运算,理解有理数的运算法则及运算律在实数的范围内的适用性;二次根式运算顺序教学可以类比实数和有理式的运算.3.代数式(1)借助现实情境了解代数式,进一步理解用字母表示数的意义.通过分析简单问题中的数量关系,了解代数式的意义;通过实施加、减、乘、除和乘方等代数运算,理解用字母表示数的意义,进而理解代数的本质特征.在理解符号所代表的数量关系中,培养抽象概括的思维方法.(2)能分析具体问题中的简单数量关系,并用代数式表示.能识别代数式,并根据条件用规范的数学符号写出代数式;结合简单的实际情境,了解数量关系,并能用字母表示
20、;通过用代数式表示数量关系,提升数感与符号意识.(3)会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值进行计算. 在求给定的代数式的值中,了解代数式的值的意义;能正确、熟练地对化简后的代数式,进行代入求值运算;能对特定问题查阅资料,查找公式,代入求值运算。并对结果进行定量、定性分析。4.整式与分式(1)了解整数指数幂的意义和基本性质,会用科学记数法表示数(包括在计算器上表示).通过实例了解同底数幂的乘法运算、幂的乘方运算、积的乘方运算的意义;举例说明基本性质的合理性;能用文字语言和符号语言准确表述基本性质,归纳基本性质的操作步骤,并能根据题目的结构特征应用基本性质,
21、能够顺用、逆用同底数幂的乘法、幂的乘方运算、积的乘方基本性质解决相关问题;理解科学记数法的意义;能够用科学记数法表示一个数;应用字母探求规律和代数式求值时,注意整体思想方法的应用.(2)理解整式的概念.通过熟悉的实例,体会单项式的系数、次数;能概括出文字语言中的数量关系,并用单项式表示;能用实例解释单项式的意义;能够举例说明多项式的项、常数项、多项式的次数;能概括出文字语言中的数量关系,并用多项式表示;能依据整式概念对整式进行分类;能概括出文字语言中的数量关系,并用整式表示.(3)掌握合并同类项的法则.能够依据同类项的意义判定两个单项式是否是同类项; 能从“运算”的角度解释“合并同类项”的意义
22、;能应用合并同类项法则正确、迅速合并同类项.(4)掌握去括号的法则.能用符号语言、文字语言解释去括号法则;能应用去括号法则熟练、准确地化简整式;(5)会进行简单的整式加法和减法运算.理解整式加减运算本质就是掌握合并同类项,了解整式加减运算的必要性;能应用整式加减运算法则和运算律正确、迅速地进行简单的整式的加减运算;能够用规范的格式书写整式的加减运算过程;能够用整式加减法解决简单实际问题.(6)能进行简单的整式乘法运算(其中多项式相乘仅指一次式之间以及一次式与二次式相乘).能用符号语言解释单项式与单项式、单项式与多项式、多项式与多项式乘法运算法则;了解法则的产生过程,体会算理的合理性;能归纳法则
23、的操作步骤,熟练准确地进行单项式与单项式、单项式与多项式、多项式与多项式乘法运算,能够利用整式运算法则和运算律正确、迅速进行简单的整式乘法的运算.(7)能进行简单的整式除法运算.通过实例了解同底数幂的除法运算的意义;在运算中了解零指数幂与负指数幂运算的意义,明确规定的合理性;能用符号语言解释单项式除以单项式、多项式除以单项式运算法则;能归纳法则的操作步骤,熟练准确地进行整式除法运算,能够正确、迅速进行简单的整式除法的运算.(8)能推导乘法公式:(ab)(ab)=a2b2;(ab)2=a22abb2,了解公式的几何背景,并能进行简单计算.经历乘法公式的产生过程,能文字语言准确地表述乘法公式;通过
24、简单的图形计算,了解乘法公式的几何背景;能够运用平方差公式、两数和(差)的平方公式准确地进行运算;能够灵活运用平方差公式、两数和(差)的平方公式对代数式进行恒等变形及代数式求值;在乘法公式的产生过程中初步感受从一般到特殊的思想.(9)会用提公因式法、公式法(直接利用公式不超过二次)进行因式分解(指数是正整数).举例说明多项式各项的公因式;会用提公因式法、公式法(直接使用公式不超过二次)进行因式分解.1.在整式的运算与实数的运算类比中,进一步体会类比思想;2.在去括号与添括号,“多项式多项式单项式多项式单项式单项式同底数幂的乘法”,因式分解与多项式相乘等的对比运算过程体会转化思想.3.在解决整式
25、运算与因式分解的问题时,要养成先观察、分析已知式的结构特征,而后再灵活选用适当方法(或公式)解题习惯.解决问题过程重在理解算理算法,提高运算能力.(10)了解分式和最简分式的概念.能识别给定的代数式是整式还是分式;会根据分式有(无)意义列出方程(组)或不等式(组),确定字母的取值范围;会识别一个分式是否是最简分式;能用分式表示具有实际背景的问题中有关数量关系. (11)能利用分式的基本性质进行约分和通分.通过类比分数的基本性质引导学生掌握分式的基本性质;能用文字语言与符号语言解释分式的基本性质;了解最简公分母的意义;会 通过类比分数的约分和通分,能用分式的基本性质正确地进行分式约分和通分运算.
26、(12)能进行简单的分式加、减、乘、除运算.类比分数运算法则,体会分式运算法则的合理性; 能用分式的加、减、乘、除的运算法则进行简单的分式的加、减、乘、除的运算;在具体的分式混合运算中,理解分式运算正确顺序;能对分式(不超过2个)进行恒等变换后,求代数式的值.方程与不等式内容标准教学要求教学建议1.方程与方程组(1)掌握等式的基本性质。通过具体案例了解方程、一元一次方程的概念;通过具体实例了解方程解的概念,能正确检验一个数是否是方程的解;掌握等式的基本性质;能够应用等式的基本性质完成等式的恒等变形,并说明变形所蕴含的算理;作为解方程依据的等式基本性质(本质是方程同解原理),教学中要潜移默化渗透
27、这种代数推理思想。(2)能解一元一次方程。通过具体的实例帮助学生体会移项的意义并会正确地、迅速地移项;能按照步骤解数字系数的一元一次方程。要加强“移项”依据教学,为后续说明每个步骤的依据教学奠基。解方程是程序化过程,教学过程中要注意适时总结解一元一次方程程序(步骤),并要对结构复杂程度不同方程,安排相应的固化练习,让解方程成为自动化操作过程;要让学生通过对方程变形是否正确的辨析和结果是否正确的验证,感受方程变形中应该注意的算理算法,提高运算的正确率,体会转化的数学思想。(3)能解可化为一元一次方程的分式方程。总结分式方程的特征,解释方程有(无)解的意义,说明验根的必要性;掌握可化为一元一次方程
28、的分式方程(方程中的分式不超过2个)的解法;解分式方程的基本思想是把含有未知数的分母去掉,将分式方程转化为整式方程来解,在解方程的过程中进一步体会“转化”的数学思想方法;解分式方程可能会出现增根,必须进行检验,要让学生理解增根产生的原因,体会检验的必要性,并会进行检验。(4)掌握代入消元法和加减消元法,能解二元一次方程组。能通过实例说明二元一次方程、二元一次方程组;能区分给定的一元一次方程与二元一次方程,二元一次方程与二元一次方程组;通过具体实例理解二元一次方程(组)的解的概念;能正确检验一组未知数的值是否是方程(组)的解;已知一个二元一次方程,能用其中一个未知数表示另一个未知数;能应用“代入
29、消元法”和“加减消元法”解二元一次方程组,并能说明运算的算理;能够根据题目的特征,灵活选用“代入法”或“加减法”解二元一次方程组;解方程组中的本质是“消元”,要在解方程组过程中体会“消元”的目的。而代入消元法在后继的学习中还会经常用到,所以要强化对代入消元法理解与掌握。(5)*三元一次方程组通过具体实例了解三元一次方程组的概念;掌握解三元一次方程组过程中化三元为二元的思路;会解简单数字系数的三元一次方程组。(6)理解配方法,能用配方法解数字系数的一元二次方程。通过具体实例了解一元二次方程的概念,能将一元二次方程化为一般形式,并在一般式中识别二次项系数、一次项系数、常数项;能在一元二次方程配方过
30、程中,归纳、概括配方法的要点;能应用配方法解简单数字系数的一元二次方程;配方法是研究二次型问题(二次方程、二次不等式、二次函数)的常用方法,要懂得配方法、数学的转化思想及其所渗透的思维多向性有助于学生思维能力的培养。(7)能用公式法解数字系数的一元二次方程。通过具体实例操作,了解求根公式的推导过程,感知参数限制条件的必要性;解释求根公式中各个字母的意义;掌握用公式法解数字系数的一元二次方程,体会求根公式的通用性;(8)能因式分解法解数字系数的一元二次方程。说明用因式分解法解一元二次方程的道理;掌握用因式分解法解数字系数的一元二次方程;能根据一元二次方程结构特征,选择合适的方法解方程。(9)经历
31、估计方程解的过程。通过具体实例让学生经历“用观察、画图或计算器等手段估计方程解”的过程;能用“观察检验”法估计方程的解;通过具体案例培养估计的意识与能力,发展数感。(10)能用一元二次方程的根的判别式判别方程是否有实根和两个实根是否相等。理解根的判别式对于判别一元二次方程是否有实根的意义;能用根的判别式判断数字系数的一元二次方程根的情况;(11)*了解一元二次方程的根与系数的关系。通过具体案例了解一元二次方程的根与系数的关系;能直接写出系数为数字的一元二次方程的两根之和与两根之积。(12)能根据具体问题中的数量关系列出方程,体会方程是刻画现实世界数量关系的有效模型。能解释应用题的背景材料中的“
32、术语”的意义;理解常见的术语增长率、打折等;能够在以实际为背景的问题中读懂信息,用文字表示数量关系;并且能够根据具体问题中的数量关系列出方程(组),体会方程是刻画现实世界的一个有效的数学模型;能用规范的格式完成列方程(组)解应用题的过程;能依据方程的解对简单的实际问题进行定量、定性分析;要重视找等量关系这一过程的练习,提高对实际问题中数量关系的分析和列方程的能力。(13)能根据具体问题的实际意义,检验方程的解是否合理。能检验方程(组)的解是否符合问题的实际意义;能判断用方程(组)解决的实际问题是否有解;2.不等式与不等式组(1)结合具体问题,了解不等式的意义。能够举例解释不等式的意义;能区分不
33、等式与方程;能够举例解释不等式的解与解集的意义;通过具体实例了解不等式解集与不等式解的关系;对一个确定的不等式,能检验某个数是否是该不等式的解;通过具体实例让学生尝试、检验、探索,初步体会不等式的解与方程解的的解与方程的解之间的区别。(2)探索不等式的基本性质。借助实验的结果,归纳、概括出不等式的基本性质;会用数学符号解释不等式的基本性质;能应用不等式的基本性质进行不等式的恒等变形。(3)能解数字系数的一元一元一次不等式一次不等式,并能在数轴上表示出解集。上表示出解集。会解数字系数的一元一次不等式;能总结解数字系数的一元一次不等式的一般步骤,并能说明每个步骤的依据;能在数轴上表示出一元一次不等
34、式的解集;能用符号语言解释在数轴上表示的一元一次不等式的解集。(4)会用数轴确定由两个一元一次不等式组成的不等式组的解集。通过具体实例了解不等式组解集的意义;能总结两个简单的一元一次不等式组成的不等式组的求解步骤,并能说明每个步骤的依据;会解两个简单的一元一次不等式组成的不等式组;会用数轴确定由两个一元一次不等式组成的不等式组的解集。(5)能够根据具体问题中的数量关系,列出一元一次不等式,解决简单的问题。能解释问题中表示不等关系的“术语”;能够在以不等式为背景的实际问题中读取信息并用符号表示其数量关系;能用规范的格式完成列一元一次不等式解应用题的过程;能依据一元一次不等式的解对简单的实际问题进
35、行定量、定性分析;能根据实际问题的要求确定不等式的解集。1.关注不等式与方程的内在联系,类比方程进行不等式的教学,并比较其异同;2.通过比较不等式(组)的解集与方程(组)的解的异同,渗透集合思想;通过指导学生观察不等式的解集在数轴上的对应范围,渗透数形结合思想;通过在现实问题中建立不等式,渗透模型思想;.有实际背景的题目要控制难度,最重要的是帮助学生建立不等意识,学习将实际问题数学化. 要鼓励学生寻求解法多样化,对某些实际问题学生也可以用方程、函数知识解决。(注:一元一次不等式组的应用题不要求)函数内容标准教学要求教学建议1.函数(1)探索简单实例中的数量关系和变化规律,了解常量、变量的意义.
36、能在实际背景或关系式中了解常量、变量的意义;会在简单的变化过程中辨别常量和变量;会用含一个变量的代数式表示另一个变量(2)结合实例,了解函数的概念和三种表示法,能举出函数的实例.通过典型、丰富的实例归纳函数概念,知道“函数”是依赖于“一个变化过程”而存在的在实例中了解自变量、因变量、函数值的概念,能辨别函数关系式中的自变量与因变量;会求函数值。结合实例了解函数的三种表示方法(关系式法、列表法、图象法)及其优缺点(3)能结合图象对简单实际问题中的函数关系进行分析.通过具休实例了解图象的意义,能从图象中获得有关常量与变量的信息;能描述点坐标在实际问题中的意义;能用生活情境解释简单的函数图象(4)能
37、确定简单实际问题中函数自变量的取值范围,并会求出函数值.能结合问题的实际意义直接写出自变量取值范围;能从简单实际问题或图象信息中找到变化过程的起点和终点直接写出自变量的取值范围会确定关系式中含简单的整式、分式的自变量取值范围(在关系式式中最多只有一个分式);会求函数值(5)能用适当的函数表示法刻画简单实际问题中变量之间的关系.能从数与形的角度分析简单实际问题中变量之间的关系,并选择适当的方法表示函数关系;掌握用描点法画函数图象的基本步骤(6)结合对函数关系的分析,能对变量的变化情况进行初步讨论通过图象和表格中数值的变化规律,对变量的变化情况进行初步讨论;结合对函数关系式中数量关系的分析,判断自
38、变量和函数值之间的变化情况教学中要紧扣函数概念本质“单值对应”关系进行。重视从函数思想角度进行函数概念教学,把静止的关系式(或曲线、表格)看作动态的变化过程,使学生从原来的常量、代数式、方程和算式的静态的关系中逐渐过渡到变量、函数这些表示量与量之间动态的关系上,实现学生的认识由静态到动态的飞跃。2.一次函数(1)结合具体情境体会一次函数的意义,能画出一次函数的图象.理解正比例函数借助实际问题情景建立一次函数关系式,体会正比例函数和一次函数的意义;通过画图实验发现一次函数(正比例函数)的图象是一条直线;会用两点法画一次函数(正比例函数)的图象;从关系式的区别与联系中,理解正比例函数是一次函数的特
39、例;从关系式与图象中,弄清一次函数与正比例函数的关系. (2)能根据已知条件确定一次函数的关系式会利用待定系数法确定一次函数的关系式能根据实际问题中数量关系直接列出一次函数关系式.在已知点坐标或图象的条件下能够用待定系数法确定一次函数关系式;(3)根据一次函数的图象和关系式y=kx+b(k0)探索并理解k0和k0时,图象的变化情况通过具体的正比例函数图象,引导学生从“形”的角度理解正比例函数的性质,掌握用图象语言、文字语言和符号语言三种方式表示正比例函数的性质,并能实现三种语言的相互转化如:“当k0时,y随x的增大而增大”这句话表示三个条件:k0,x1x2,y1y2.” “当k0时,y随x的增
40、大而增大”与这时“函数图象从左到右上升”是等价的.类比正比例函数,引导学生从“形”的角度理解一次函数的性质,能用图象、文字和符号语言三种方式表示一次函数的性质,并能实现三种语言的相互转化.结合图象理解一次函数y=kx+b(k0)中k,b与图象之间的关系;能根据k,b的范围画出直线的示意图,并能根据直线位置确定k,b的取值范围;结合图象,从“形”的角度理解函数y=kx(k0)的图象与函数y=kx+b(k0)的图象的位置关系(平行,上、下平移个单位长度);对于给定的直线,能根据平移(只要求上、下平移)的要求,求出对应直线的关系式。(4)体会一次函数与二元一次方程的关系通过具体实例体会一次函数图象上
41、的每一个点的坐标与二元一次方程的一组解之间的关系;通过具体实例理解一次函数交点坐标与二元一次方程组的解之间的关系,能够用求二元一次方程组的解的方法求两个一次函数图象的交点坐标.(5)能用一次函数解决简单实际问题通过实际情境引导学生能用一次函数刻画某些实际问题中变量之间的关系(若遇到分段函数,不必要求用一个综合的关系式表示);能确定问题情境中函数自变量的取值范围,并画出相应函数的图象;根据自变量的实际意义,会求出一次函数的值;通过实例能结合一次函数的图象对简单实际问题中的函数关系进行分析.3.反比例函数(1)结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的关系式.借助实际问题情景
42、建立反比例函数关系式,体会反比例函数的意义;能根据实际问题中数量关系直接列出反比例函数关系式.在给定已知条件下,能够确定反比例函数关系式.(2)能画出反比例函数的图象,根据图象和关系式y=(k0)探索并理解k0和k0时,图象的变化情况.通过具体的关系式引导学生选取一定数量的对应点,用描点法画反比例函数在某一象限内的图象;通过具体的反比例函数图象,结合关系式引导学生能从反比例函数关系式取值特征来分析反比例函数图象的特征;通过画图实验探索并理解k0或k0时,图象的变化情况,掌握用图象、文字和符号语言三种方式表示反比例函数的性质,并能实现三种语言的相互转化,从 “形”与“数”两个角度说明在每一象限内
43、反比例函数的增减性;通过具体的图象引导学生根据双曲线位置确定k0或k0;结合反比例函数y=(k0)的图象理解反比例函数关系式中k的几何意义.(3)能用反比例函数解决简单实际问题.能用反比例函数刻画某些实际问题中变量之间的关系;能根据实际问题情境画反比例函数的图象;能用反比例函数的有关知识对实际问题进行定性或定量的分析.4.二次函数(1)通过对实际问题的分析,体会二次函数的意义.借助实际问题情景建立二次函数关系式,了解二次函数的有关概念。(2)会用描点法画出二次函数的图象,通过图象了解二次函数的性质.通过描点法画图实验发现二次函数的图象是抛物线;解题中会用五点(顶点、对称轴两旁各2点)法画出二次
44、函数的示意图;结合图象特征,从“形”的角度了解二次函数的性质,知道用图象、文字和符号语言三种方式表示二次函数的性质;对于给定的抛物线,能根据平移的要求,求出对应抛物线的关系式.(3)会用配方法将数字系数的二次函数的关系式化为的形式,并能由此得到二次函数图象的顶点坐标,说出图象的开口方向,画出图象的对称轴,并能解决简单实际问题.结合将具体数字系数的二次函数的关系式化为y=a(x-h)2+k的形式的过程,学会用配方法;运用配方法或公式法求数字系数的二次函数的图象的顶点和对称轴;运用配方法或公式法求数字系数的二次函数的最大(小)值;通过具体二次函数图象了解系数a,b,c对二次函数y=ax2+bx+c
45、(a0)的图象位置的影响.(4)会利用二次函数的图象求一元二次方程的近似解.通过画具体二次函数图象与x轴的交点,学会确定交点横坐标的近似值;通过具体二次函数与一次函数图象,能画出其交点,并确定交点横坐标的近似值;通过具体二次函数图象能通过列表法分析确定相应一元二次方程的近似解.(5)* 知道给定不共线三点的坐标可以确定一个二次函数.会用待定系数法求二次函数关系式;依据已知条件的特点,灵活选择二次函数的形式(如一般式、顶点式等)求函数关系式.1.每个具体函数概念教学都要舍得花时间、花力气要注意把握其概念的本质,注意概念的形成的教学2.明确每个函数研究套路“实际问题情境抽象函数概念画出函数图象探索
46、函数性质解决实际问题”,知道研究的内容:自变量取值范围、函数的图象、函数的增减性等;懂得研究 “三步曲”画函数图象,观察归纳特征,数学语言描述性质;3.重视函数图象的直观作用,注重数形结合思想在探索函数性质等探究性学习中的应用,设置一些由函数图象分析实际问题数量关系的练习. 4.引导学生从函数的观点出发理解函数与方程(组)、不等式之间的关系,借助方程(组)、不等式等工具解决函数的问题.同时从“数”和“形”两个方面审视方程(组)、不等式,理解图象与坐标轴的交点、图象与图象的交点、何时函数值大于零或小于零等意义。5.认识函数图象上点的坐标满足该函数的关系式,坐标满足函数关系式的点在该函数图象上. 6.通过具体实例引导学生在探究反