收藏 分销(赏)

2021年数学专升本考试试题.doc

上传人:a199****6536 文档编号:5671821 上传时间:2024-11-15 格式:DOC 页数:11 大小:508.04KB 下载积分:8 金币
下载 相关 举报
2021年数学专升本考试试题.doc_第1页
第1页 / 共11页
2021年数学专升本考试试题.doc_第2页
第2页 / 共11页


点击查看更多>>
资源描述
高等数学(二)命题预测试卷(二) 一、 选取题(本大题共5个小题,每小题4分,共20分。在每个小题给出选 项中,只有一项是符合题目规定,把所选项前字母填在题后括号内) 1.下列函数中,当时,与无穷小量相比是高阶无穷小是( ) A. B. C. D. 2.曲线在内是( ) A.处处单调减小 B.处处单调增长 C.具备最大值 D.具备最小值 3.设是可导函数,且,则为( ) A.1 B.0 C.2 D. 4.若,则为( ) A. B. C.1 D. 5.设等于( ) A. B. C. D. 二、 填空题:本大题共10个小题,10个空,每空4分,共40分,把答案填在 题中横线上。 6.设,则= . 7.设,则 . 8.,则 . 9.设二重积分积分区域D是,则 . 10.= . 11.函数极小值点为 . 12.若,则 . 13.曲线在横坐标为1点处切线方程为 . 14.函数在处导数值为 . 15. . 三、解答题:本大题共13小题,共90分,解答应写出推理、演算环节。 16.(本题满分6分) 求函数间断点. 17.(本题满分6分) 计算. 18.(本题满分6分) 计算. 19.(本题满分6分) 设函数,求. 20.(本题满分6分) 求函数二阶导数. 21.(本题满分6分) 求曲线极值点. 22.(本题满分6分) 计算. 23.(本题满分6分) 若一种原函数为,求. 24.(本题满分6分) 已知,求常数值. 25.(本题满分6分) 求函数极值. 26.(本题满分10分) 求,其中D是由曲线与所围成平面区域. 27.(本题满分10分) 设,且常数,求证:. 28.(本题满分10分) 求函数单调区间、极值、此函数曲线凹凸区间、拐点以及渐近线并作出函数图形. 参照答案 一、 选取题 1.B 2.B 3.D 4.D 5.D 二、填空题 6. 7. 8. 9. 10. 11. 12.5 13. 14. 15.0 三、解答题 16.解 这是一种分段函数,在点左极限和右极限都存在. 故当时,极限不存在,点是第一类间断点. 17.解 原式=. 18.解 设. 由于是初等函数可去间断点, 故 . 19.解 一方面在时,分别求出函数各表达式导数,即 当时, 当时,. 然后分别求出在处函数左导数和右导数,即 从而,函数在处不可导. 因此 20.解 ① ② 又由①解得 代入②得 21.解 先出求一阶导数: 令 即 解得驻点为. 再求出二阶导数. 当时,,故是极小值. 当时,,在内,,在内 故 不是极值点. 总之 曲线只有极小值点. 22.解 23.解 由题设知 故 . 24.解 又 故 解得. 25.解 解方程组得驻点 又 对于驻点,故 驻点不是极值点. 对于驻点 故 ,又. 函数在点获得极大值 26.解 由与得两曲线交点为与 反函数为. 27.证 于是. 28.解 (1)先求函数定义域为. (2)求和驻点:,令得驻点. (3)由符号拟定函数单调增减区间及极值. 当时,,因此单调增长; 当时,,因此单调减少. 由极值第一充分条件可知为极大值. (4)求并拟定符号: ,令得. 当时,,曲线为凸; 当时,,曲线为凹. 依照拐点充分条件可知点为拐点. 这里和计算是本题核心,读者在计算时一定要认真、仔细。 此外建议读者用列表法来分析求解更为简捷,现列表如下: + 0 - - - - 0 + 就表上所给和符号,可得到: 函数单调增长区间为; 函数单调减少区间为; 函数极大值为; 函数凸区间为; 函数凹区间为; 函数拐点为. (5)由于, 因此曲线有 水平渐近线 铅垂渐近线 (6)依照上述函数特性作出函数图形如下图.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 考试专区 > 专升本考试

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服