收藏 分销(赏)

中档大题保分练(六).doc

上传人:仙人****88 文档编号:5639960 上传时间:2024-11-15 格式:DOC 页数:4 大小:96.01KB
下载 相关 举报
中档大题保分练(六).doc_第1页
第1页 / 共4页
中档大题保分练(六).doc_第2页
第2页 / 共4页
点击查看更多>>
资源描述
中档大题保分练(六) (推荐时间:50分钟) 1. 如图,在平面直角坐标系xOy中,点A在x轴正半轴上,直线AB的 倾斜角为,|OB|=2,设∠AOB=θ,θ∈. (1)用θ表示点B的坐标及|OA|; (2)若tan θ=-,求·的值. 解 (1)由题意,可得点B的坐标为(2cos θ,2sin θ). 在△ABO中,|OB|=2,∠BAO=,∠B=π--θ=-θ. 由正弦定理,得=, 即|OA|=2sin. (2)由(1),得·=||·||·cos θ =4sincos θ. 因为tan θ=-,θ∈, 所以sin θ=,cos θ=-. 又sin=sin cos θ-cos sin θ=×-×=, 故·=4××=-. 2. 如图,已知斜三棱柱ABC-A1B1C1的底面是正三角形,侧面ABB1A1 是菱形,且∠A1AB=60°,M是A1B1的中点,MB⊥AC. (1)求证:MB⊥平面ABC; (2)求二面角A1-BB1-C的余弦值. (1)证明 ∵侧面ABB1A1是菱形,且∠A1AB=60°, ∴△A1BB1为正三角形, 又∵点M为A1B1的中点,∴BM⊥A1B1, ∵AB∥A1B1,∴BM⊥AB,由已知MB⊥AC, 又AC∩AB=A,∴MB⊥平面ABC. (2)解 如图建立空间直角坐标系, 设菱形ABB1A1边长为2, 得B1(0,-1,),A(0,2,0),C(,1,0),A1(0,1,). 则=(0,1,),=(0,2,0), =(0,-1,),=(,1,0). 设面ABB1A1的法向量n1=(x1,y1,z1), 由n1⊥,n1⊥1得, 令x1=1,得n1=(1,0,0). 设面BB1C1C的法向量n2=(x2,y2,z2), 由n2⊥,n2⊥得 令y2=,得n2=(-1,,1), 得cos〈n1,n2〉===-. 又二面角A1-BB1-C为锐角, 所以所求二面角的余弦值为. 3. 某班体育课进行篮球投篮比赛,比赛规则如下:每位同学有4次投篮机会,其中一次在三分线外投篮,投中得3分,不中不得分,其余3次在罚球线外投篮,每投中一次得1分,不中不得分,已知某位同学在三分线外投篮命中的概率为,且在比赛中得6分的概率为. (1)求该同学在罚球线外投篮命中的概率; (2)求该同学参加比赛所得分数X的分布列及数学期望. 解 (1)设该同学在罚球线外投篮命中的概率为p,在比赛中得6分需4次投篮全中,则·p3=, 解得p=. (2)X的可能取值有0,1,2,3,4,5,6, 则P(X=0)=·3=; P(X=1)=·C··2=; P(X=2)=·C·2·=; P(X=3)=·3+·3=; P(X=4)=·C··2=; P(X=5)=·C·2·=; P(X=6)=×3=. 所以所求分布列为 X 0 1 2 3 4 5 6 P 数学期望E(X)=0×+1×+2×+3×+4×+5×+6×=. 4. 已知等比数列{an}满足2a1+a3=3a2,且a3+2是a2,a4的等差中项. (1)求数列{an}的通项公式; (2)若bn=an+log2,Sn=b1+b2+…+bn,求使Sn-2n+1+47<0成立的正整数n的最小值. 解 (1)设等比数列{an}的公比为q. 由得 由①,得q2-3q+2=0,解得q=1或q=2. 当q=1时,不合题意舍去; 当q=2时,代入②,得a1=2.则an=2·2n-1=2n. (2)因为bn=an+log2=2n+log2=2n-n, 所以Sn=b1+b2+b3+…+bn =2-1+22-2+23-3+…+2n-n =(2+22+23+…+2n)-(1+2+3+…+n) =-=2n+1-2-n-n2. 因为Sn-2n+1+47<0, 所以2n+1-2-n-n2-2n+1+47<0, 即n2+n-90>0,解得n>9或n<-10. 又n∈N*, 故使Sn-2n+1+47<0成立的正整数n的最小值为10.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 小学其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服