收藏 分销(赏)

数学苏教七年级下册期末解答题压轴重点中学试题名校及答案解析.doc

上传人:w****g 文档编号:5603274 上传时间:2024-11-14 格式:DOC 页数:21 大小:789.04KB
下载 相关 举报
数学苏教七年级下册期末解答题压轴重点中学试题名校及答案解析.doc_第1页
第1页 / 共21页
数学苏教七年级下册期末解答题压轴重点中学试题名校及答案解析.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述
数学苏教七年级下册期末解答题压轴重点中学试题精选名校及答案解析 一、解答题 1.小明在学习过程中,对教材中的一个有趣问题做如下探究: (习题回顾)已知:如图1,在中,,是角平分线,是高,、相交于点.求证:; (变式思考)如图2,在中,,是边上的高,若的外角的平分线交的延长线于点,其反向延长线与边的延长线交于点,则与还相等吗?说明理由; (探究延伸)如图3,在中,上存在一点,使得,的平分线交于点.的外角的平分线所在直线与的延长线交于点.直接写出与的数量关系. 2.(生活常识) 射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图 1,MN 是平面镜,若入射光线 AO 与水平镜面夹角为∠1,反射光线 OB 与水平镜面夹角为∠2,则∠1=∠2 . (现象解释) 如图 2,有两块平面镜 OM,ON,且 OM⊥ON,入射光线 AB 经过两次反射,得到反射光线 CD.求证 AB∥CD. (尝试探究) 如图 3,有两块平面镜 OM,ON,且∠MON =55° ,入射光线 AB 经过两次反射,得到反射光线 CD,光线 AB 与 CD 相交于点 E,求∠BEC 的大小. (深入思考) 如图 4,有两块平面镜 OM,ON,且∠MON = α ,入射光线 AB 经过两次反射,得到反射光线 CD,光线 AB 与 CD 所在的直线相交于点 E,∠BED=β , α 与 β 之间满足的等量关系是 .(直接写出结果) 3.己知:如图①,直线直线,垂足为,点在射线上,点在射线上(、不与点重合),点在射线上且,过点作直线.点在点的左边且 (1)直接写出的面积 ; (2)如图②,若,作的平分线交于,交于,试说明; (3)如图③,若,点在射线上运动,的平分线交的延长线于点,在点运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围. 4.模型与应用. (模型) (1)如图①,已知AB∥CD,求证∠1+∠MEN+∠2=360°. (应用) (2)如图②,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6的度数为 . 如图③,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度数为 . (3)如图④,已知AB∥CD,∠AM1M2的角平分线M1 O与∠CMnMn-1的角平分线MnO交于点O,若∠M1OMn=m°. 在(2)的基础上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度数.(用含m、n的代数式表示) 5.如图①所示,在三角形纸片中,,,将纸片的一角折叠,使点落在内的点处. (1)若,________. (2)如图①,若各个角度不确定,试猜想,,之间的数量关系,直接写出结论. ②当点落在四边形外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,,,之间又存在什么关系?请说明. (3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的和是________. 6.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补. (1)试判断直线AB与直线CD的位置关系,并说明理由; (2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF//GH. (3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值若变化,说明理由. 7.如图,,点在直线上,点在直线和之间,,平分. (1)求的度数(用含的式子表示); (2)过点作交的延长线于点,作的平分线交于点,请在备用图中补全图形,猜想与的位置关系,并证明; (3)将(2)中的“作的平分线交于点”改为“作射线将分为两个部分,交于点”,其余条件不变,连接,若恰好平分,请直接写出__________(用含的式子表示). 8.模型规律:如图1,延长交于点D,则.因为凹四边形形似箭头,其四角具有“”这个规律,所以我们把这个模型叫做“箭头四角形”. 模型应用 (1)直接应用: ①如图2,,则__________; ②如图3,__________; (2)拓展应用: ①如图4,、的2等分线(即角平分线)、交于点,已知,,则__________; ②如图5,、分别为、的10等分线.它们的交点从上到下依次为、、、…、.已知,,则__________; ③如图6,、的角平分线、交于点D,已知,则__________; ④如图7,、的角平分线、交于点D,则、、之同的数量关系为__________. 9.当光线经过镜面反射时,入射光线、反射光线与镜面所夹的角对应相等,例如:在图①、图②中,都有∠1=∠2,∠3=∠4.设镜子AB与BC的夹角∠ABC=α. (1)如图①,若入射光线EF与反射光线GH平行,则α=________°. (2)如图②,若90°<α<180°,入射光线EF与反射光线GH的夹角∠FMH=β.探索α与β的数量关系,并说明理由. (3)如图③,若α=120°,设镜子CD与BC的夹角∠BCD=γ(90°<γ<180°),入射光线EF与镜面AB的夹角∠1=m(0°<m<90°),已知入射光线EF从镜面AB开始反射,经过n(n为正整数,且n≤3)次反射,当第n次反射光线与入射光线EF平行时,请直接写出γ的度数.(可用含有m的代数式表示) 10.如图,直线MN∥GH,直线l1分别交直线MN、GH于A、B两点,直线l2分别交直线MN、GH于C、D两点,且直线l1、l2交于点E,点P是直线l2上不同于C、D、E点的动点. (1)如图①,当点P在线段CE上时,请直写出∠NAP、∠HBP、∠APB之间的数量关系:   ; (2)如图②,当点P在线段DE上时,(1)中的∠NAP、∠HBP、∠APB之间的数量关系还成立吗?如果成立,请说明成立的理由;如果不成立,请写出这三个角之间的数量关系,并说明理由. (3)如果点P在直线l2上且在C、D两点外侧运动时,其他条件不变,请直接写出∠NAP、∠HBP、∠APB之间的数量关系   . 【参考答案】 一、解答题 1.[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸] ∠M+∠CFE=90°,证明见解析. 【分析】 [习题回顾]根据同角的余角相等可证明∠B=∠ACD,再根据三角形的外角的性质即可 解析:[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸] ∠M+∠CFE=90°,证明见解析. 【分析】 [习题回顾]根据同角的余角相等可证明∠B=∠ACD,再根据三角形的外角的性质即可证明; [变式思考]根据角平分线的定义和对顶角相等可得∠CAE=∠DAF、再根据直角三角形的性质和等角的余角相等即可得出=; [探究延伸]根据角平分线的定义可得∠EAN=90°,根据直角三角形两锐角互余可得∠M+∠CEF=90°,再根据三角形外角的性质可得∠CEF=∠CFE,由此可证∠M+∠CFE=90°. 【详解】 [习题回顾]证明:∵∠ACB=90°,CD是高, ∴∠B+∠CAB=90°,∠ACD+∠CAB=90°, ∴∠B=∠ACD, ∵AE是角平分线, ∴∠CAF=∠DAF, ∵∠CFE=∠CAF+∠ACD,∠CEF=∠DAF+∠B, ∴∠CEF=∠CFE; [变式思考]相等,理由如下: 证明:∵AF为∠BAG的角平分线, ∴∠GAF=∠DAF, ∵∠CAE=∠GAF, ∴∠CAE=∠DAF, ∵CD为AB边上的高,∠ACB=90°, ∴∠ADC=90°, ∴∠ADF=∠ACE=90°, ∴∠DAF+∠F=90°,∠E+∠CAE=90°, ∴∠CEF=∠CFE; [探究延伸]∠M+∠CFE=90°, 证明:∵C、A、G三点共线   AE、AN为角平分线, ∴∠EAN=90°, 又∵∠GAN=∠CAM, ∴∠M+∠CEF=90°, ∵∠CEF=∠EAB+∠B,∠CFE=∠EAC+∠ACD,∠ACD=∠B, ∴∠CEF=∠CFE, ∴∠M+∠CFE=90°. 【点睛】 本题考查三角形的外角的性质,直角三角形两锐角互余,角平分线的有关证明,等角或同角的余角相等.在本题中用的比较多的是利用等角或同角的余角相等证明角相等和三角形一个外角等于与它不相邻的两个内角之和,理解并掌握是解决此题的关键. 2.【现象解释】见解析;【尝试探究】ÐBEC = 70°;【深入思考】 b = 2a. 【分析】 [现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠ 解析:【现象解释】见解析;【尝试探究】ÐBEC = 70°;【深入思考】 b = 2a. 【分析】 [现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可证得AB∥CD; [尝试探究]根据三角形内角和定理求得∠2+∠3=125°,根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用平角的定义得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根据三角形内角和定理即可得出∠BEC=180°-110°=70°; [深入思考]利用平角的定义得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性质∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-∠2=α,即可证得β=2α. 【详解】 [现象解释] 如图2, ∵OM⊥ON, ∴∠CON=90°, ∴∠2+∠3=90° ∵∠1=∠2,∠3=∠4, ∴∠1+∠2+∠3+∠4=180°, ∴∠DCB+∠ABC=180°, ∴AB∥CD; 【尝试探究】 如图3, 在△OBC中,∵∠COB=55°, ∴∠2+∠3=125°, ∵∠1=∠2,∠3=∠4, ∴∠1+∠2+∠3+∠4=250°, ∵∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°, ∴∠EBC+BCE=360°-250°=110°, ∴∠BEC=180°-110°=70°; 【深入思考】 如图4, β=2α, 理由如下:∵∠1=∠2,∠3=∠4, ∴∠ABC=180°-2∠2,∠BCD=180°-2∠3, ∴∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β, ∵∠BOC=∠3-∠2=α, ∴β=2α. 【点睛】 本题考查了平行线的判定,三角形外角的性质以及三角形内角和定理,熟练掌握三角形的性质是解题的关键. 3.(1)3; (2)见解析; (3)见解析 【详解】 分析:(1)因为△BCD的高为OC,所以S△BCD=CD•OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠ 解析:(1)3; (2)见解析; (3)见解析 【详解】 分析:(1)因为△BCD的高为OC,所以S△BCD=CD•OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠CFE. (3)由∠ABC+∠ACB=2∠DAC,∠H+∠HCA=∠DAC,∠ACB=2∠HCA,求出∠ABC=2∠H,即可得答案. 详解:(1)S△BCD=CD•OC=×3×2=3. (2)如图②,∵AC⊥BC,∴∠BCF=90°,∴∠CFE+∠CBF=90°.∵直线MN⊥直线PQ,∴∠BOC=∠OBE+∠OEB=90°.∵BF是∠CBA的平分线,∴∠CBF=∠OBE.∵∠CEF=∠OBE,∴∠CFE+∠CBF=∠CEF+∠OBE,∴∠CEF=∠CFE. (3)如图③,∵直线l∥PQ,∴∠ADC=∠PAD.∵∠ADC=∠DAC ∴∠CAP=2∠DAC.∵∠ABC+∠ACB=∠CAP,∴∠ABC+∠ACB=2∠DAC.∵∠H+∠HCA=∠DAC,∴∠ABC+∠ACB=2∠H+2∠HCA ∵CH是,∠ACB的平分线,∴∠ACB=2∠HCA,∴∠ABC=2∠H,∴=. 点睛:本题主要考查垂线,角平分线和三角形面积,解题的关键是找准相等的角求解. 4.(1)证明见解析;(2)900° ,180°(n-1);(3)(180n-180-2m)° 【详解】 【模型】 (1)证明:过点E作EF∥CD, ∵AB∥CD, ∴EF∥AB, ∴∠1+∠MEF 解析:(1)证明见解析;(2)900° ,180°(n-1);(3)(180n-180-2m)° 【详解】 【模型】 (1)证明:过点E作EF∥CD, ∵AB∥CD, ∴EF∥AB, ∴∠1+∠MEF=180°, 同理∠2+∠NEF=180° ∴∠1+∠2+∠MEN=360° 【应用】 (2)分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°; 由上面的解题方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1), 故答案是:900° , 180°(n-1); (3)过点O作SR∥AB, ∵AB∥CD, ∴SR∥CD, ∴∠AM1O=∠M1OR 同理∠C MnO=∠MnOR ∴∠A M1O+∠CMnO=∠M1OR+∠MnOR, ∴∠A M1O+∠CMnO=∠M1OMn=m°, ∵M1O平分∠AM1M2, ∴∠AM1M2=2∠A M1O, 同理∠CMnMn-1=2∠CMnO, ∴∠AM1M2+∠CMnMn-1=2∠AM1O+2∠CMnO=2∠M1OMn=2m°, 又∵∠A M1M2+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CMnMn-1=180°(n-1), ∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)° 点睛:本题考查了平行线的性质,角平分线的定义,解决此类题目,过拐点作平行线是解题的关键,准确识图理清图中各角度之间的关系也很重要. 5.(1)50°;(2)①见解析;②见解析;(3)360°. 【分析】 (1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解; (2)①先根据折叠得:∠ADE=∠A′DE,∠AED=∠A′ 解析:(1)50°;(2)①见解析;②见解析;(3)360°. 【分析】 (1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解; (2)①先根据折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,由两个平角∠AEB和∠ADC得:∠1+∠2等于360°与四个折叠角的差,化简得结果; ②利用两次外角定理得出结论; (3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A'LH),再利用三角形的内角和定理即可求解. 【详解】 解:(1)∵,, ∴∠A′=∠A=180°-(65°+70°)=45°, ∴∠A′ED+∠A′DE =180°-∠A′=135°, ∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE)=360°-310°=50°; (2)①,理由如下 由折叠得:∠ADE=∠A′DE,∠AED=∠A′ED, ∵∠AEB+∠ADC=360°, ∴∠1+∠2=360°-∠ADE-∠A′DE-∠AED-∠A′ED=360°-2∠ADE-2∠AED, ∴∠1+∠2=2(180°-∠ADE-∠AED)=2∠A; ②,理由如下: ∵是的一个外角 ∴. ∵是的一个外角 ∴ 又∵ ∴ (3)如图 由题意知, ∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A') 又∵∠B=∠B',∠C=∠C',∠A=∠A', ∠A+∠B+∠C=180°, ∴∠1+∠2+∠3+∠4+∠5+∠6=360°. 【点睛】 题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度. 6.(1)见详解;(2)见详解;(3)∠HPQ的大小不发生变化,理由见详解. 【分析】 (1)根据同旁内角互补,两条直线平行即可判断直线AB与直线CD平行; (2)先根据两条直线平行,同旁内角互补,再根 解析:(1)见详解;(2)见详解;(3)∠HPQ的大小不发生变化,理由见详解. 【分析】 (1)根据同旁内角互补,两条直线平行即可判断直线AB与直线CD平行; (2)先根据两条直线平行,同旁内角互补,再根据∠BEF与∠EFD的角平分线交于点P,可得∠EPF=90°,进而证明PF∥GH; (3)根据角平分线定义,及角的和差计算即可求得∠HPQ的度数,进而即可得到结论. 【详解】 解:(1)AB∥CD,理由如下: ∵∠1与∠2互补, ∴∠1+∠2=180°, 又∵∠1=∠AEF,∠2=∠CFE, ∴∠AEF+∠CFE=180°, ∴AB∥CD; (2)由(1)知,AB∥CD, ∴∠BEF+∠EFD=180°. 又∵∠BEF与∠EFD的角平分线交于点P, ∴∠FEP+∠EFP= (∠BEF+∠EFD)=90°, ∴∠EPF=90°,即EG⊥PF. ∵GH⊥EG, ∴PF∥GH; (3)∵∠PHK=∠HPK, ∴∠PKG=2∠HPK. 又∵GH⊥EG, ∴∠KPG=90°−∠PKG=90°−2∠HPK. ∴∠EPK=180°−∠KPG=90°+2∠HPK. ∵PQ平分∠EPK, ∴∠QPK=∠EPK=45°+∠HPK. ∴∠HPQ=∠QPK−∠HPK=45°. ∴∠HPQ的大小不发生变化. 【点睛】 本题考查了平行线的判定和性质、余角和补角,解决本题的关键是综合运用角平分线的定义、平行线的性质、余角和补角. 7.(1);(2)画图见解析,,证明见解析;(3)或 【分析】 (1)根据平行线的传递性推出,再利用平行线的性质进行求解; (2)猜测,根据平分,推导出,再根据、平分,通过等量代换求解; (3)分两种情 解析:(1);(2)画图见解析,,证明见解析;(3)或 【分析】 (1)根据平行线的传递性推出,再利用平行线的性质进行求解; (2)猜测,根据平分,推导出,再根据、平分,通过等量代换求解; (3)分两种情况进行讨论,即当与,充分利用平行线的性质、角平分线的性质、等量代换的思想进行求解. 【详解】 (1)过点作, , , , . (2)根据题意,补全图形如下: 猜测, 由(1)可知:, 平分, , , , , 又平分, , , . (3)①如图1, , 由(2)可知:, , , , , , , , , , 又平分, , ; ②如图2, ,(同①); 若, 则有, 又, , , , 综上所述:或, 故答案是:或. 【点睛】 本题考查了平行线的性质、角平分线、三角形内角和定理、垂直等相关知识点,解题的关键是掌握相关知识点,作出适当的辅助线,通过分类讨论及等量代换进行求解. 8.(1)①110;②260;(2)①85;②110;③142;④∠B-∠C+2∠D=0 【分析】 (1)①根据题干中的等式直接计算即可; ②同理可得∠A+∠B+∠C+∠D+∠E+∠F=∠BOC+∠DO 解析:(1)①110;②260;(2)①85;②110;③142;④∠B-∠C+2∠D=0 【分析】 (1)①根据题干中的等式直接计算即可; ②同理可得∠A+∠B+∠C+∠D+∠E+∠F=∠BOC+∠DOE,代入计算即可; (2)①同理可得∠BO1C=∠BOC-∠OBO1-∠OCO1,代入计算可得; ②同理可得∠BO7C=∠BOC-(∠BOC-∠A),代入计算即可; ③利用∠ADB=180°-(∠ABD+∠BAD)=180°-(∠BOC-∠C)计算可得; ④根据两个凹四边形ABOD和ABOC得到两个等式,联立可得结论. 【详解】 解:(1)①∠BOC=∠A+∠B+∠C=60°+20°+30°=110°; ②∠A+∠B+∠C+∠D+∠E+∠F=∠BOC+∠DOE=2×130°=260°; (2)①∠BO1C=∠BOC-∠OBO1-∠OCO1 =∠BOC-(∠ABO+∠ACO) =∠BOC-(∠BOC-∠A) =∠BOC-(120°-50°) =120°-35° =85°; ②∠BO7C=∠BOC-(∠BOC-∠A) =120°-(120°-50°) =120°-10° =110°; ③∠ADB=180°-(∠ABD+∠BAD) =180°-(∠BOC-∠C) =180°-(120°-44°) =142°; ④∠BOD=∠BOC=∠B+∠D+∠BAC, ∠BOC=∠B+∠C+∠BAC, 联立得:∠B-∠C+2∠D=0. 【点睛】 本题主要考查了新定义—箭头四角形,利用了三角形外角的性质,还考查了角平分线的定义,图形类规律,解题的关键是理解箭头四角形,并能熟练运用其性质. 9.(1)90°;(2)β=2α-180°,理由见解析;(3)90°+m或150° 【分析】 (1)根据EF∥GH,得到∠FEG+∠EGH=180°,再根据∠1+∠2+∠FEG=180°,∠3+∠4+∠ 解析:(1)90°;(2)β=2α-180°,理由见解析;(3)90°+m或150° 【分析】 (1)根据EF∥GH,得到∠FEG+∠EGH=180°,再根据∠1+∠2+∠FEG=180°,∠3+∠4+∠EGH=180°,以及∠1=∠2,∠3=∠4,可得∠2+∠3=90°,即可求出α=90°; (2)在△BEG中,∠2+∠3+α=180°,可得∠2+∠3=180°-α,根据入射光线、反射光线与镜面所夹的角对应相等可得,∠MEG=2∠2,∠MGE=2∠3,在△MEG中,∠MEG+∠MGE+β=180°,可得α与β的数量关系; (3)分两种情况画图讨论:①当n=3时,根据入射光线、反射光线与镜面所夹的角对应相等,及△GCH内角和,可得γ=90°+m.②当n=2时,如果在BC边反射后与EF平行,则α=90°,与题意不符;则只能在CD边反射后与EF平行,根据三角形外角定义,可得∠G=γ-60°,由EF∥HK,且由(1)的结论可得,γ=150°. 【详解】 解:(1)在△BEG中,∠2+∠3+α=180°, ∵EF∥GH, ∴∠FEG+∠EGH=180°, ∵∠1+∠2+∠FEG=180°,∠3+∠4+∠EGH=180°, ∴∠1+∠2+∠3+∠4=180°, ∵∠1=∠2,∠3=∠4, ∴∠2+∠3=90°, ∴α=180°-(∠2+∠3)=90°; (2)β=2α-180°,理由如下: 在△BEG中,∠2+∠3+α=180°, ∴∠2+∠3=180°-α, ∵∠1=∠2,∠1=∠MEB, ∴∠2=∠MEB, ∴∠MEG=2∠2, 同理可得,∠MGE=2∠3, 在△MEG中,∠MEG+∠MGE+β=180°, ∴β=180°-(∠MEG+∠MGE) =180°-(2∠2+2∠3) =180°-2(∠2+∠3) =180°-2(180°-α) =2α-180°; (3)90°+m或150°. 理由如下:①当n=3时,如下图所示: ∵∠BEG=∠1=m, ∴∠BGE=∠CGH=60°-m, ∴∠FEG=180°-2∠1=180°-2m, ∠EGH=180°-2∠BGE=180°-2(60°-m), ∵EF∥HK, ∴∠FEG+∠EGH+∠GHK=360°, 则∠GHK=120°, 则∠GHC=30°, 由△GCH内角和,得γ=90°+m. ②当n=2时,如果在BC边反射后与EF平行,则α=90°, 与题意不符; 则只能在CD边反射后与EF平行, 如下图所示: 根据三角形外角定义,得 ∠G=γ-60°, 由EF∥HK,且由(1)的结论可得, ∠G=γ-60°=90°, 则γ=150°. 综上所述:γ的度数为:90°+m或150°. 【点睛】 本题考查了平行线的性质、列代数式,解决本题的关键是掌握平行线的性质,注意分类讨论思想的利用. 10.(1)∠APB=∠NAP+∠HBP;(2)见解析;(3)∠HBP=∠NAP+∠APB 【分析】 (1)过P点作PQ∥GH,根据平行线的性质即可求解; (2)过P点作PQ∥GH,根据平行线的性质即可求 解析:(1)∠APB=∠NAP+∠HBP;(2)见解析;(3)∠HBP=∠NAP+∠APB 【分析】 (1)过P点作PQ∥GH,根据平行线的性质即可求解; (2)过P点作PQ∥GH,根据平行线的性质即可求解; (3)根据平行线的性质和三角形外角的性质即可求解. 【详解】 解:(1)如图①,过P点作PQ∥GH, ∵MN∥GH, ∴MN∥PQ∥GH, ∴∠APQ=∠NAP,∠BPQ=∠HBP, ∵∠APB=∠APQ+∠BPQ, ∴∠APB=∠NAP+∠HBP, 故答案为:∠APB=∠NAP+∠HBP; (2)如图②,过P点作PQ∥GH, ∵MN∥GH, ∴MN∥PQ∥GH, ∴∠APQ+∠NAP=180°,∠BPQ+∠HBP=180°, ∵∠APB=∠APQ+∠BPQ, ∴∠APB=(180°﹣∠NAP)+(180°﹣∠HBP)=360°﹣(∠NAP+∠HBP); (3)如备用图, ∵MN∥GH, ∴∠PEN=∠HBP, ∵∠PEN=∠NAP+∠APB, ∴∠HBP=∠NAP+∠APB. 故答案为:∠HBP=∠NAP+∠APB. 【点睛】 此题考查了平行公理的推论:平行于同一条直线的两直线平行,以及平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,熟记定理是解题的关键.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服