1、深圳罗湖区罗湖中学八年级上册期末数学试卷含答案一、选择题1、下列城市地铁标志图案中,既是中心对称图形又是轴对称图形的是()ABCD2、芝麻被称为“八谷之冠”,是世界上最古老的油料作物之一,它作为食品和药物,得到广泛的使用经测算,一粒芝麻的质量约为0.00000201kg,将一粒芝麻的质量用科学记数法表示均为()ABCD3、下列各式中,计算结果是x8的是()Ax4+x4Bx16x2Cx4x4D(2x4)24、使二次根式有意义的x的取值范围是()Ax1Bx1Cx1Dx15、下列由左边到右边的变形,属于因式分解的是()A2(mn)2m2nBCD6、下列各式从左至右变形一定正确的是()ABCD7、如图
2、,点D、E分别在AB、AC上,补充一个条件后,仍不能判定ABE与ACD全等的是()ABCD8、若关于x的分式方程2的解是正整数,且一次函数y(a1)x+(a+10)的图象不经过第三象限,则满足条件的所有整数a的和是()A3B13C16D179、如图,D在边上,则的度数为()A35B40C50D65二、填空题10、如图所示,是一个由四个相同的小矩形与一个小正方形摆放而成的大正方形图案,已知该图案的面积为49,小正方形的面积为9,若用x,y分别表示小矩形的两边长(xy),则以下关系式中不正确的是()ABCD11、若分式的值为0,则x的值是_12、点(3,2)关于y轴的对称点的坐标是_13、若,则整
3、式_14、计算:(0.25)202142022_15、如图,四边形ABCD中,E、F分别是AD、AB上的动点,当的周长最小时,的度数是_16、x2+2kx+9是一个完全平方式,则k的值为_17、已知a+b5,ab6,则ab的值为 _18、如图,已知AB12m,CAAB于点A,DBAB于点B,且AC4m,点P从点B向点A运动,每分钟走1m,点Q从点B向点D运动,每分钟走2m若P,Q两点同时出发,运动 _分钟后,CAP与PQB全等三、解答题19、因式分解:(1);(2)20、解分式方程:21、如图,点B,E,C,F在一条直线上,AB=DF,AC=DE,BE=CF求证:A=D22、在图a中,应用三角
4、形外角的性质不难得到下列结论:BDC=A+ABD+ACD我们可以应用这个结论解决同类图形的角度问题(1)在图a中,若1=20,2=30,BEC=100,则BDC=;(2)在图a中,若BE平分ABD,CE平分ACD,BE与CE交于E点,请写出BDC,BEC和BAC之间的关系;并说明理由(3)如图b,若,试探索BDC,BEC和BAC之间的关系(直接写出)23、儿童节前夕,某中学组织学生去儿童福利院慰问,在准备礼品时发现,购买个甲礼品比购买个乙礼品多花元,并且花费元购买甲礼品和花费元购买乙礼品可买到的数量相等(1)求甲、乙两种礼品的单价各为多少元;(2)学校准备购买甲、乙两种礼品共个送给福利院的儿童
5、,并且购买礼品的总费用不超过元,那么最多可购买多少个甲礼品?24、把代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法如:用配方法分解因式:a2+6a+8,解:原式=a2+6a+8+1-1=a2+6a+9-1=(a+3)212=M=a2-2a1,利用配方法求M的最小值解:(a-b)20,当a=1时,M有最小值1、请根据上述材料解决下列问题:(1)用配方法因式分解:(2)若,求M的最小值(3)已知x2+2y2+z2-2xy-2y-4z+5=0,求x+y+z的值25、(初步探索)(1)如图:在四边形中,、分别是、上的点,且,探究图中、之间的数量关系(1)(1)小
6、明同学探究此问题的方法是:延长到点,使连接,先证明,再证明,可得出结论,他的结论应是_;(2)(灵活运用)(2)如图2,若在四边形中,、分别是、上的点,且,上述结论是否仍然成立,并说明理由;一、选择题1、D【解析】D【分析】把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形根据轴对称图形和中心对称图形的定义,对各选项分析判断即可【详解】解:A是中心对称图形,但不是轴对称图形,不符合题意;B是轴对称图形,但不是中心对称图形,不符合题意;C是中心对称图形,但不是轴对称图形
7、,不符合题意;D是中心对称图形又是轴对称图形,符合题意故选:D【点睛】本题主要考查了中心对称图形和轴对称图形的定义,能熟记中心对称图形和轴对称图形的定义是解此题的关键2、C【解析】C【分析】根据2前面有6个0得到指数为-6,表示为科学记数法即可【详解】解:0.00000201=2.0110-6kg,故选:C【点睛】本题考查利用科学记数法把绝对值较小的数表示为a10-n形式,其中1|a|10,解题的关键是掌握n等于原数第一个非0的数字前面0的个数3、C【解析】C【分析】利用合并同类项的法则,同底数幂的除法的法则,积的乘方的法则,同底数幂的乘法的法则对各项进行运算即可【详解】解:A、x4+x42x
8、4,故A不符合题意;B、x16x2x14,故B不符合题意;C、x4x4x8,故C符合题意;D、(2x4)24x8,故D不符合题意;故选:C【点睛】本题主要考查积的乘方,同底数幂的乘法,合并同类项,同底数幂的除法,解答的关键是对相应的运算法则的掌握4、B【解析】B【分析】根据二次根式有意义的条件是被开方数大于等于0,列式计算即可得解【详解】解:由题意得,x+10,解得,故选:B【点睛】本题考查二次根式有意义的条件,涉及到解一元一次不等式,熟记二次根式的性质是解决问题的关键5、C【解析】C【分析】根据因式分解的定义,逐项判断即可求解【详解】解:A、由左边到右边的变形,不属于因式分解,故本选项不符合
9、题意;B、由左边到右边的变形,不属于因式分解,故本选项不符合题意;C、由左边到右边的变形,属于因式分解,故本选项符合题意;D、由左边到右边的变形,不属于因式分解,故本选项不符合题意;故选:C【点睛】本题主要考查了因式分解的定义解题的关键是掌握因式分解的意义,因式分解是把一个多项式化为几个整式的积的形式,注意因式分解与整式乘法的区别6、D【解析】D【分析】根据分式的性质,对选项逐个判断即可,分式的分子和分母同时乘以或者除以一个不为0的数,分式的值不变【详解】解:A、,选项错误,不符合题意;B、,选项错误,不符合题意;C、当时,无意义,不符合题意;D、,正确,符合题意;故选:D【点睛】此题考查了分
10、式的性质,掌握分式的有关性质是解题的关键7、C【解析】C【分析】按照补充后的条件,利用全等三角形的判定方法逐个分析即可求解【详解】解:A、添加后,ABE与ACD中,利用ASA可以证明ABE与ACD全等;B、添加后,ABE与ACD中,利用SAS可以证明ABE与ACD全等;C、添加后,ABE与ACD中,一组角相等,且非夹角的两边相等,不能证明ABE与ACD全等;D、添加后,ABE与ACD中, ,利用AAS可以证明ABE与ACD全等;故答案为:C【点睛】本题考查全等三角形的判定方法,需要注意:SSA不能判定两个三角形全等8、B【解析】B【分析】根据关于x的分式方程的解是正整数,一次函数图像不经过第三
11、象限可以求得满足条件的a的值,进而求得所有整数a的和【详解】解: , ,关于x的分式方程的解是正整数,是正整数且不等于2,一次函数y(a1)x+(a+10)的图象不经过第三象限,解得10a1,满足条件的所有整数a的和是:,故选:B【点睛】本题考查一次函数的性质,分式方程的解,解答本题关键在于明确题意,求出a的值,利用一次函数性质和分式方程的知识解答9、D【解析】D【分析】由可知,是ADC的一个外角,已知与它不相邻的两个内角,即可求出的度数【详解】在ADC中,=30+35=65故选:D【点睛】本题只要你考查了三角形的全等的性质,掌握全等三角形对应角相等以及三角形的一个外角等于与它不相邻的两个内角
12、之和是解题的关键二、填空题10、D【解析】D【分析】本题中正方形图案的边长7,同时还可用(x+y)来表示,其面积从整体看是49,从组合来看,可以是(x+y)2,还可以是(4xy+9),接下来,我们再灵活运用等式的变形,即可作出判断【详解】因为正方形图案的边长7,同时还可用(x+y)来表示,故x+y=7,A选项正确,因为正方形图案面积从整体看是49,从组合来看,可以是(x+y)2,还可以是(4xy+9),所以有(x+y)2=49,4xy+9=49即xy= 10,所以(x-y)2=(x+y)2-4xy=49-40=9,即x-y=3;所以B、C选项正确,x2+y2=(x+y)2-2xy=49-210
13、= 29,故D选项是错误的;故选:D【点睛】本题考查完全平方公式,本题的解答需结合图形,利用等式的变形来解决问题11、-3【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0两个条件需同时具备,缺一不可据此可以解答本题【详解】解:由题意可得x+3=0且x-20,解得x=-2、故答案为:-2、【点睛】本题考查了分式的值为零的条件,由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题12、(-3,-2)【分析】根据点的坐标关于y轴对称的特征“关于谁对称,谁就不变,另一个互为相反数”可进行求解【详解】解:由点(3,2)关于y轴的对称点的坐标是(-3,-2);故答案为(-3,-2
14、)【点睛】本题主要考查点的坐标关于坐标轴对称,熟练掌握点的坐标关于坐标轴对称的特征是解题的关键13、【分析】已知等式右边通分并利用同分母分式的加法法则计算,再根据分式相等确定出即可【详解】解:已知等式整理得:,解得:故答案为:【点睛】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键14、4【分析】积的乘方,把每一个因式分别乘方,再把所得的幂相乘,据此计算即可【详解】解:故答案为:【点睛】本题主要考查了幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键15、40#40度【分析】要使CEF的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出C关于BA和AD的对称点N,M,即可得出,
15、最后利用CMN内角和即可得出答案【详解】作C关于BA【解析】40#40度【分析】要使CEF的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出C关于BA和AD的对称点N,M,即可得出,最后利用CMN内角和即可得出答案【详解】作C关于BA和AD的对称点N,M,连接MN,交AD于E1,交AB于F1,则MN即为CEF的周长最小值 ,DCB=110,由对称可得:CF1=F1N,E1C=E1M,即当的周长最小时,的度数是40,故答案为:40【点睛】本题考查的是轴对称-最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质、等边对等角等知识,根据已知得出的周长最小时,E,F的位置是解题关
16、键16、3【分析】根据完全平方式的特点知,2k=6,从而可得k的值【详解】根据完全平方式的特点,得2k=6,即k=3故答案为:3【点睛】本题考查了完全平方式,掌握完全平方式的特点:两数的【解析】3【分析】根据完全平方式的特点知,2k=6,从而可得k的值【详解】根据完全平方式的特点,得2k=6,即k=3故答案为:3【点睛】本题考查了完全平方式,掌握完全平方式的特点:两数的平方和,加上或减去这两个数的乘积的2倍,是本题的关键要注意的是部分同学往往漏掉了k为3的情况17、【分析】根据完全平方公式的变形求解即可【详解】解:a+b5,故答案为:【点睛】本题主要考查了完全平方公式的变形求值,熟知完全平方公
17、式是解题的关键【解析】【分析】根据完全平方公式的变形求解即可【详解】解:a+b5,故答案为:【点睛】本题主要考查了完全平方公式的变形求值,熟知完全平方公式是解题的关键18、4【分析】根据题意CAAB,DBAB,则,则分或两种情况讨论,根据路程等于速度乘以时间求得的长,根据全等列出一元一次方程解方程求解即可【详解】解:CAAB,DBAB,点P从点B向点A【解析】4【分析】根据题意CAAB,DBAB,则,则分或两种情况讨论,根据路程等于速度乘以时间求得的长,根据全等列出一元一次方程解方程求解即可【详解】解:CAAB,DBAB,点P从点B向点A运动,每分钟走1m,点Q从点B向点D运动,每分钟走2m,
18、设运动时间为,且AC4m,当时则,即,解得当时,则,即,解得且不符合题意,故舍去综上所述即分钟后,CAP与PQB全等故答案为:【点睛】本题考查了三角形全等的性质,根据全等的性质列出方程是解题的关键三、解答题19、(1)3(x-2y)2;(2)(x-5y)(x+2y)【分析】(1)先提公因式,再用完全平方公式分解因式即可;(2)用十字相乘法分解因式即可(1)解:=3(x2-4xy+4y2)=【解析】(1)3(x-2y)2;(2)(x-5y)(x+2y)【分析】(1)先提公因式,再用完全平方公式分解因式即可;(2)用十字相乘法分解因式即可(1)解:=3(x2-4xy+4y2)=3(x-2y)2;(
19、2)解:=(x-5y)(x+2y)【点睛】本题考查了提公因式法与公式法的综合运用,十字相乘法,掌握a22ab+b2=(ab)2是解题的关键20、【分析】根据分式方程的解法去分母化为整式方程即可求解【详解】,检验:当时,原方程的解是【点睛】此题主要考查解分式方程,解题的关键是熟知分式方程的解法【解析】【分析】根据分式方程的解法去分母化为整式方程即可求解【详解】,检验:当时,原方程的解是【点睛】此题主要考查解分式方程,解题的关键是熟知分式方程的解法21、见解析【分析】由BE与CF相等,利用等式的性质得到BC=EF,利用SSS得到三角形ABC与三角形DFE全等,利用全等三角形对应角相等即可得证【详解
20、】证明:BE=CF,BE+EC=CF+E【解析】见解析【分析】由BE与CF相等,利用等式的性质得到BC=EF,利用SSS得到三角形ABC与三角形DFE全等,利用全等三角形对应角相等即可得证【详解】证明:BE=CF,BE+EC=CF+EC,即BC=EF,在ABC和DFE中,ABC DFE,A=D【点睛】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键22、(1)150(2)BDC+BAC=2BEC(3)2BDC+BAC=3BEC【分析】(1)根据题目给出的条件可得:;(2)根据题意得出BDC=BEC+1+2,BEC=【解析】(1)150(2)BDC+BAC=2BEC
21、(3)2BDC+BAC=3BEC【分析】(1)根据题目给出的条件可得:;(2)根据题意得出BDC=BEC+1+2,BEC=BAC+ABE+ACE,再根据BE平分ABD,CE平分ACD,得出ABE=1,ACE=2,然后进行化简即可得出结论;(3)先根据题意得出BDC=BEC+1+2,BEC=BAC+ABE+ACE,再根据,得出BEC=BAC+21+22,整理化简即可得出结论(1)解:1=20,2=30,BEC=100,故答案为:150(2)由题意可知,BDC=BEC+1+2,BEC=BAC+ABE+ACE,BE平分ABD,CE平分ACD,ABE=1,ACE=2,-得BDC-BEC=BEC-BAC
22、,即BDC+BAC=2BEC(3)由题意可知,BDC=BEC+1+2,BEC=BAC+ABE+ACE,1=ABD,2=ACD,ABE=21,ACE=21、由得BEC=BAC+21+22,2-得2BDC-BEC=2BEC-BAC,即2BDC+BAC=3BEC【点睛】本题主要考查了角平分线的定义,三角形外角的性质,理解题意,充分利用数形结合的思想,是解题的关键23、(1)甲礼品80元,乙礼品60元(2)最多可购买20个甲礼品【分析】(1)设购买一个乙礼品需要x元,根据题意列分式方程求解即可;(2)设总费用不超过2000元,可购买m个甲礼品,则购买乙礼品(【解析】(1)甲礼品80元,乙礼品60元(2
23、)最多可购买20个甲礼品【分析】(1)设购买一个乙礼品需要x元,根据题意列分式方程求解即可;(2)设总费用不超过2000元,可购买m个甲礼品,则购买乙礼品(50m)个,根据题意列不等式求解即可(1)设购买一个乙礼品需要x元,根据题意得:,解得:x=60,经检验x=60是原方程的根,x+20=80答:甲礼品80元,乙礼品60元;(2)设总费用不超过3400元,可购买m个甲礼品,则购买乙礼品(50m)个,根据题意得:80m+60(50m)3400,解得:m19、答:最多可购买20个甲礼品【点睛】此题主要考查了分式方程和不等式的应用,关键是正确理解题意,找出题目中的等量关系和不等关系,列出方程和不等
24、式24、(1);(2);(3)3、【分析】(1)根据配方法,配凑出一个完全平方公式,再利用公式法进行因式分解即可;(2)先利用配方法,配凑出一个完全平方公式,再根据偶次方的非负性求解即可;(3)先利用【解析】(1);(2);(3)3、【分析】(1)根据配方法,配凑出一个完全平方公式,再利用公式法进行因式分解即可;(2)先利用配方法,配凑出一个完全平方公式,再根据偶次方的非负性求解即可;(3)先利用配方法进行因式分解,再利用偶次方的非负性求出x、y、z的值,然后代入求解即可【详解】(1)原式;(2)当时,有最小值;(3)解得则【点睛】本题考查了利用配方法进行因式分解、偶次方的非负性等知识点,读懂
25、题意,掌握配方法是解题关键25、(1)(初步探索)结论:BAEFADEAF;(2)(灵活运用)成立,理由见解析【分析】(1)延长FD到点G,使DG=BE,连接AG,可判定ABEADG,进而得出BAE=DAG【解析】(1)(初步探索)结论:BAEFADEAF;(2)(灵活运用)成立,理由见解析【分析】(1)延长FD到点G,使DG=BE,连接AG,可判定ABEADG,进而得出BAE=DAG,AE=AG,再判定AEFAGF,可得出EAF=GAF=DAG+DAF=BAE+DAF,据此得出结论;(2)延长FD到点G,使DG=BE,连接AG,先判定ABEADG,进而得出BAE=DAG,AE=AG,再判定A
26、EFAGF,可得出EAF=GAF=DAG+DAF=BAE+DAF(1)解:BAEFADEAF理由:如图1,延长FD到点G,使DGBE,连接AG,DGBE,ABEADG,BAEDAG,AEAG,EF=BE+FD,DGBE,且AEAG,AFAF,AEFAGF,EAFGAFDAGDAFBAEDAF故答案为:BAEFADEAF;(2)如图2,延长FD到点G,使DGBE,连接AG, BADF180,ADGADF180,BADG,又ABAD,ABEADG(SAS),BAEDAG,AEAG,EFBEFDDGFDGF,AFAF,AEFAGF(SSS),EAFGAFDAGDAFBAEDAF【点睛】本题考查了全等三角形的判定以及性质的综合应用,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应角相等进行推导变形解题时注意:同角的补角相等