收藏 分销(赏)

等比数列的概念与性质练习题.doc

上传人:仙人****88 文档编号:5586209 上传时间:2024-11-13 格式:DOC 页数:4 大小:265.50KB
下载 相关 举报
等比数列的概念与性质练习题.doc_第1页
第1页 / 共4页
等比数列的概念与性质练习题.doc_第2页
第2页 / 共4页
等比数列的概念与性质练习题.doc_第3页
第3页 / 共4页
等比数列的概念与性质练习题.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、 等比数列的概念和通项公式练习题1.已知等比数列的公比为正数,且=2,=1,则= A. B. C. D.2 2. 如果成等比数列,那么( ) A、 B、 C、 D、3、若数列的通项公式是 (A)15 (B)12 (C) D) 4.在等比数列an中,a28,a564,则公比q为() A2 B3 C4 D85.若等比数列an满足anan+1=16n,则公比为A2 B4 C8 D166.若互不相等的实数成等差数列,成等比数列,且,则 A4 B2 C2 D47.公比为等比数列的各项都是正数,且,则=( ) A. B. C. D.8.在等比数列中,则( ) A. B. C. 或 D. 或9.等比数列中,

2、已知,则的值为( ) A16 B24 C48 D12810.实数依次成等比数列,其中=2,=8,则的值为( )A. 4 B.4 C. 4 D. 511.等比数列的各项均为正数,且18,则A12 B10 C8 D212. 设函数的最小值为,最大值为,则是( ) A.公差不为零的等差数列 B.公比不为的等比数列 C.常数列 D.既不是等差数列也不是等比数列13. 三个数成等比数列,且,则的取值范围是( ) A. B. C. D. 14.已知等差数列的公差,且成等比数列,则的值为 15.已知1, a1, a2, 4成等差数列,1, b1, b2, b3, 4成等比数列,则_16已知 ,把数列的各项排

3、成三角形状: 记表示第行,第列的项,则=_.17.设二次方程有两个实根和,且满足(1)试用表示;(2)求证:是等比数列;(3)当时,求数列的通项公式 18.已知两个等比数列、满足,.(1)若,求数列的通项公式;(2)若数列唯一,求的值等比数列的概念与性质练习题参考答案1. B【解析】设公比为,由已知得,即,又因为等比数列的公比为正数, 所以,故,选B2.B 3.A 4. A 5。B6. D解析 由互不相等的实数成等差数列可设abd,cbd,由可得b2, 所以a2d,c2d,又成等比数列可得d6,所以a4,选D7.【解析】8.C 9.A 10.B 11.B12.【解析】选A.由已知得an=f(1

4、)=n,bn=f(-1)=f(3)=n+4,cn=bn2-anbn=(n+4)2-n(n+4)=4n+16,显然cn是 公差为4的等差数列。13.【分析】应用等比数列的定义和基本不等式。选D。14. 15.;解析:1, a1, a2, 4成等差数列,;1, b1, b2, b3, 4成等比数列, 又,;16.前项共有个项,前项共用去项,为第行第个数,即时。17.(1)解析:,而,得, 即,得;(2)证明:由(1),得,所以是等比数列;(3)解析:当时,是以为首项,以为公比的等比数列, ,得18.【分析】 (1)设an的公比为q,则b11a2,b22aq2q,b33aq23q2.由b1,b2,b3成等比数列得(2q)22(3q2),即q24q20,解得q12,q22,所以an的通项公式为an(2)n1或an(2)n1.(2)设an的公比为q,则由(2aq)2(1a)(3aq2),得aq24aq3a10.(*)由a0得,4a24a0,故方程(*)有两个不同的实根,由an唯一,知方程(*)必有一根为0,代入(*)得a.19.数列为等差数列,为正整数,其前项和为,数列为等比数列,且,数列是公比为64的等比数列,.(1)求;(2)求证.19.解:(1)设的公差为,的公比为,则为正整数,依题意有由知为正有理数,故为的因子之一,解得故(2)4

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 小学其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服