收藏 分销(赏)

北航卡尔曼滤波实验报告GPS静动态滤波实验.docx

上传人:Fis****915 文档编号:556242 上传时间:2023-12-11 格式:DOCX 页数:8 大小:196.33KB
下载 相关 举报
北航卡尔曼滤波实验报告GPS静动态滤波实验.docx_第1页
第1页 / 共8页
北航卡尔曼滤波实验报告GPS静动态滤波实验.docx_第2页
第2页 / 共8页
北航卡尔曼滤波实验报告GPS静动态滤波实验.docx_第3页
第3页 / 共8页
北航卡尔曼滤波实验报告GPS静动态滤波实验.docx_第4页
第4页 / 共8页
北航卡尔曼滤波实验报告GPS静动态滤波实验.docx_第5页
第5页 / 共8页
点击查看更多>>
资源描述

1、卡尔曼滤波实验报告2014 年 4 月GPS静/动态滤波实验一、实验要求1、分别建立GPS静态及动态卡尔曼滤波模型,编写程序对静态和动态GPS数据进行Kalman滤波。2、对比滤波前后导航轨迹图。3、画出滤波过程中估计均方差(P阵对角线元素开根号)的变化趋势。4、思考: 简述动态模型与静态模型的区别与联系; R阵、Q阵,P0阵的选取对滤波精度及收敛速度有何影响,取值时应注意什么; 本滤波问题是否可以用最小二乘方法解决,如果可以,请阐述最小二乘方法与Kalman滤波方法的优劣对比。二、实验原理2.1 GPS静态滤波选取系统的状态变量为,其中为纬度(deg),为经度(deg),为高度(m)。设为零

2、均值高斯白噪声,则系统的状态方程为:(1)所以离散化的状态模型为:(2)式中,为单位阵,为系统噪声序列。测量数据包括:纬度静态量测值、经度静态量测值和高度构成矩阵,量测方程可以表示为:(3)式中,为单位阵,为量测噪声序列。系统的状态模型是十分准确的,所以系统模型噪声方差阵可以取得十分小,取阵零矩阵。系统测量噪声方差阵由测量确定,由于位置量测精度为5m,采用克拉索夫斯基地球椭球模型,长半径为6378245m,短半径为6356863m。所以阵为:(4)2.2 GPS动态滤波动态滤波基于当前统计模型,在地球坐标系下解算。选取系统的状态变量为,其中依次为地球坐标系下轴上的位置、速度、加速度和位置误差分

3、量,轴同理。系统的状态模型可以表示为:(5)式中,位置误差视为有色噪声,为一阶马尔科夫过程,可表示为:(6)其中,()为对应马尔科夫过程的相关时间常数,为零均值高斯白噪声。系统矩阵可表示为:(7)其中,()输入量可表示为:(8)式中,为机动加速度的当前均值,其自适应确定方法为:,同理可得。系统噪声为:(9)量测量为纬度动态量测值、经度动态量测值、高度和三向速度量测值。由于滤波在地球坐标系下进行,为了简便首先将纬度、经度和高度转化为三轴位置坐标值,转化方式如下:(10)所以,滤波的量测量为三轴位置坐标值和三轴速度测量值,即。量测方程为:(11)式中,为零均值高斯白噪声。综上,离散化的Kalman

4、滤波方程为:(12)式中,离散化的系统噪声协方差阵为:,机动加速度自适应确定方法为:(13)离散化量测噪声协方差阵为:。三、实验结果3.1 GPS静态滤波图1 GPS静态滤波前后导航轨迹图和估计误差3.2 GPS动态滤波图2 GPS动态滤波前后导航轨迹图和估计误差四、实验讨论1简述动态模型与静态模型的区别与联系。静态模型的速度和加速度均为0,系统静止,状态模型比较准确,模型误差较小,量测信息只有位置信息。动态模型系统的速度和加速度均发生变化,采用当前统计模型建模,相比之下,系统模型的误差较大,量测信息由位置和速度信息。静态模型是动态模型在速度和加速度均为0时的特殊情况。 2R阵、Q阵,P0阵的

5、选取对滤波精度及收敛速度有何影响,取值时应注意什么。R阵的取值对滤波精度的影响很大,当R取得太大,系统就不能有效的利用量测信息对状态进行修正,因此滤波精度较低;相反,R取得太小,系统过分依赖量测信息,无法利用状态模型有效的去除有害的量测噪声,同样降低滤波的精度。Q阵的取值对滤波精度的影响也很大:Q取得太大,系统就不能有效的利用状态模型对测量噪声进行修正,因此滤波精度就较低;反之,Q取得太小,系统就会过分的依赖状态模型的精度,以致量测信息无法对状态进行有效的修正,也会降低滤波精度;只有当R和Q的取值恰好与使用的状态模型的精度相吻合时,才能使状态模型和量测信息都能有效的发挥作用,互相补充,得到最高

6、的滤波精度。P0阵的取值对于可观测性良好的系统,只影响开始的滤波精度,对收敛精度影响不大,但影响收敛速度。 3)本滤波问题是否可以用最小二乘方法解决,如果可以,请阐述最小二乘方法与Kalman滤波方法的优劣对比。 本滤波问题可以用最小二乘方法解决。最小二乘方法的最大优点是算法简单,特别是对一般的最小二乘估计,根本不必知道量测误差的统计信息。但又存在使用上的局限性,该方法只能估计确定性的常值向量,而无法估计随机向量的时间过程;最小二乘的最优指标只保证了量测的误差平方和最小,而并未确保被估计量的估计误差达到最佳,因此该方法的估计精度不高。而卡尔曼滤波是一种线性最小方差估计,其算法是递推的,且使用状态空间法在时域内设计滤波器,适用于多维随机过程的估计;卡尔曼滤波的估计量可以是平稳的,也可以是非平稳的;卡尔曼滤波具有连续型和离散型两类算法,离散型算法可直接在数字计算机上实现。

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 行业资料 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服