资源描述
折叠与旋转专题复习
一、基础训练
1.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是( )
A.25° B.30° C.35° D.40°
2.已知矩形ABCD中,AB=1,在BC上取一点E ,沿AE将△ABE向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,则AD=( )
A. B. C. D.2
3.如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=,则四边形MABN的面积是
A. B. C. D.
(第3题图)
4.如图,两块相同的三角形完全重合在一起,∠A=30°,AC=10,把上面一块绕直角顶点B逆时针旋转到△A′B′C′的位置,点C′在AC上,A′C′与AB相交于点D,则C′D= .
5.如图,在矩形ABCD中,点E,F分别在BC,CD上,将△ABE沿AE折叠,使点B落在AC上的点B`处,又将△CEF沿EF折叠,使点C落在直线EB`与AD的交点C`处.则BC∶AB的值为 .
二、范例分析
例1.矩形ABCD中,AD=5,AB=3,将矩形ABCD沿某直线折叠,使点A的对应点A′落在线段BC上,再打开得到折痕EF.
(1)当A′与B重合时(如图1),EF= ;当折痕EF过点D时(如图2),求线段
EF的长;
(2)观察图3和图4,设BA′=x,①当x的取值范围是 时,四边形AEA′F是菱形;②在①的条件下,利用图4证明四边形AEA′F是菱形.
图1 图2 图3 图4
例2.如图,在直角梯形ABCD中,∠D=∠BCD=90°,∠B=60°, AB=6,AD=9,点E是CD上的一个动点(E不与D重合),过点E作EF∥AC,交AD于点F(当E运动到C时,EF与AC重合巫台).把△DEF沿EF对折,点D的对应点是点G,设DE=x,△GEF与梯形ABCD重叠部分的面积为y。
(1) 求CD的长及∠1的度数;
(2) 若点G恰好在BC上,求此时x的值;
(3) 求y与x之间的函数关系式。并求x为何值时,y的值最大?最大值是多少?
三、巩固练习
1.如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点。
(1) 求证:△ABE∽△ECM;
(2) 探究:在△DEF运动过程中,重叠部分能否构成等腰三角形,若能,求出BE的长;若不能,请说明理由;
(3) 当线段AM最短时,求重叠部分的面积。
2.如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.
(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;
(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=,CQ=时,P、Q两点间的距离 (用含的代数式表示).
3.如图所示,现有一张边长为4的正方形纸片,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.
(1)求证:∠APB=∠BPH;
(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;
A
B
C
D
E
F
G
H
P
(备用图)
(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.
A
B
C
D
E
F
G
H
P
展开阅读全文