资源描述
一、解答题
1.如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(﹣3,2).
(1)直接写出点E的坐标 ;
(2)在四边形ABCD中,点P从点B出发,沿“BC→CD”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:
①当t= 秒时,点P的横坐标与纵坐标互为相反数;
②求点P在运动过程中的坐标,(用含t的式子表示,写出过程);
③当点P运动到CD上时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,试问 x,y,z之间的数量关系能否确定?若能,请用含x,y的式子表示z,写出过程;若不能,说明理由.
2.如图1,已知直线CD∥EF,点A,B分别在直线CD与EF上.P为两平行线间一点.
(1)若∠DAP=40°,∠FBP=70°,则∠APB=
(2)猜想∠DAP,∠FBP,∠APB之间有什么关系?并说明理由;
(3)利用(2)的结论解答:
①如图2,AP1,BP1分别平分∠DAP,∠FBP,请你写出∠P与∠P1的数量关系,并说明理由;
②如图3,AP2,BP2分别平分∠CAP,∠EBP,若∠APB=β,求∠AP2B.(用含β的代数式表示)
3.已知,如图1,射线PE分别与直线AB,CD相交于E、F两点,∠PFD的平分线与直线AB相交于点M,射线PM交CD于点N,设∠PFM=α°,∠EMF=β°,且(40﹣2α)2+|β﹣20|=0
(1)α= ,β= ;直线AB与CD的位置关系是 ;
(2)如图2,若点G、H分别在射线MA和线段MF上,且∠MGH=∠PNF,试找出∠FMN与∠GHF之间存在的数量关系,并证明你的结论;
(3)若将图中的射线PM绕着端点P逆时针方向旋转(如图3),分别与AB、CD相交于点M1和点N1时,作∠PM1B的角平分线M1Q与射线FM相交于点Q,问在旋转的过程中的值是否改变?若不变,请求出其值;若变化,请说明理由.
4.如图,∠EBF=50°,点C是∠EBF的边BF上一点.动点A从点B出发在∠EBF的边BE上,沿BE方向运动,在动点A运动的过程中,始终有过点A的射线AD∥BC.
(1)在动点A运动的过程中, (填“是”或“否”)存在某一时刻,使得AD平分∠EAC?
(2)假设存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之间有何数量关系?并请说明理由;
(3)当AC⊥BC时,直接写出∠BAC的度数和此时AD与AC之间的位置关系.
5.已知:如图(1)直线AB、CD被直线MN所截,∠1=∠2.
(1)求证:AB//CD;
(2)如图(2),点E在AB,CD之间的直线MN上,P、Q分别在直线AB、CD上,连接PE、EQ,PF平分∠BPE,QF平分∠EQD,则∠PEQ和∠PFQ之间有什么数量关系,请直接写出你的结论;
(3)如图(3),在(2)的条件下,过P点作PH//EQ交CD于点H,连接PQ,若PQ平分∠EPH,∠QPF:∠EQF=1:5,求∠PHQ的度数.
6.已知,AB∥CD,点E为射线FG上一点.
(1)如图1,若∠EAF=25°,∠EDG=45°,则∠AED= .
(2)如图2,当点E在FG延长线上时,此时CD与AE交于点H,则∠AED、∠EAF、∠EDG之间满足怎样的关系,请说明你的结论;
(3)如图3,当点E在FG延长线上时,DP平分∠EDC,∠AED=32°,∠P=30°,求∠EKD的度数.
7.请观察下列等式,找出规律并回答以下问题.
,,,,……
(1)按照这个规律写下去,第5个等式是:______;第n个等式是:______.
(2)①计算:.
②若a为最小的正整数,,求:
.
8.阅读下面的文字,解答问题
大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?
事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.
又例如:<<,即2<<3,
∴的整数部分为2,小数部分为(﹣2)
请解答:
(1)整数部分是 ,小数部分是 .
(2)如果的小数部分为a,的整数部分为b,求|a﹣b|+的值.
(3)已知:9+=x+y,其中x是整数,且0<y<1,求x﹣y的相反数.
9.阅读下面的文字,解答问题.
对于实数a,我们规定:用符号[a]表示不大于a的最大整数;用{a}表示a减去[a]所得的差.
例如:[]=1,[2.2]=2,{}=﹣1,{2.2}=2.2﹣2=0.2.
(1)仿照以上方法计算:[]= {5﹣}= ;
(2)若[]=1,写出所有满足题意的整数x的值: .
(3)已知y0是一个不大于280的非负数,且满足{}=0.我们规定:y1=[],y2=[],y3=[],…,以此类推,直到yn第一次等于1时停止计算.当y0是符合条件的所有数中的最大数时,此时y0= ,n= .
10.给定一个十进制下的自然数,对于每个数位上的数,求出它除以的余数,再把每一个余数按照原来的数位顺序排列,得到一个新的数,定义这个新数为原数的“模二数”,记为.如.对于“模二数”的加法规定如下:将两数末位对齐,从右往左依次将相应数位.上的数分别相加,规定:与相加得;与相加得与相加得,并向左边一位进.如的“模二数”相加的运算过程如下图所示.
根据以上材料,解决下列问题:
(1)的值为______ ,的值为_
(2)如果两个自然数的和的“模二数”与它们的“模二数”的和相等,则称这两个数“模二相加不变”.如,因为,所以,即与满足“模二相加不变”.
①判断这三个数中哪些与“模二相加不变”,并说明理由;
②与“模二相加不变”的两位数有______个
11.[阅读材料]
∵,即,∴,∴的整数部分为1,∴的小数部分为
[解决问题]
(1)填空:的小数部分是__________;
(2)已知是的整数部分,是的小数部分,求代数式的平方根为______.
12.已知,在计算:的过程中,如果存在正整数,使得各个数位均不产生进位,那么称这样的正整数为“本位数”.例如:2和30都是“本位数”,因为没有进位,没有进位;15和91都不是“本位数”,因为,个位产生进位,,十位产生进位.则根据上面给出的材料:
(1)下列数中,如果是“本位数”请在后面的括号内打“√”,如果不是“本位数”请在后面的括号内画“×”.
106( );111( );400( );2015( ).
(2)在所有的四位数中,最大的“本位数”是 ,最小的“本位数”是 .
(3)在所有三位数中,“本位数”一共有多少个?
13.如图1在平面直角坐标系中,大正方形OABC的边长为m厘米,小正方形ODEF的边长为n厘米,且|m﹣4|+=0.
(1)求点B、点D的坐标.
(2)起始状态如图1所示,将大正方形固定不动,小正方形以1厘米/秒的速度沿x轴向右平移,如图2.设平移的时间为t秒,在平移过程中两个正方形重叠部分的面积为S平方厘米.
①当t=1.5时,S= 平方厘米;
②在2≤t≤4这段时间内,小正方形的一条对角线扫过的图形的面积为 平方厘米;
③在小正方形平移过程中,若S=2,则小正方形平移的时间t为 秒.
(3)将大正方形固定不动,小正方形从图1中起始状态沿x轴向右平移,在平移过程中,连接AD,过D点作DM⊥AD交直线BC于M,∠DAx的角平分线所在直线和∠CMD的角平分线所在直线交于N(不考虑N点与A点重合的情形),求∠ANM的大小并说明理由.
14.已知,点在与之间.
(1)图1中,试说明:;
(2)图2中,的平分线与的平分线相交于点,请利用(1)的结论说明:.
(3)图3中,的平分线与的平分线相交于点,请直接写出与之间的数量关系.
15.在平面直角坐标系中,已知线段,点的坐标为,点的坐标为,如图1所示.
(1)平移线段到线段,使点的对应点为,点的对应点为,若点的坐标为,求点的坐标;
(2)平移线段到线段,使点在轴的正半轴上,点在第二象限内(与对应, 与对应),连接如图2所示.若表示△BCD的面积),求点、的坐标;
(3)在(2)的条件下,在轴上是否存在一点,使表示△PCD的面积)?若存在,求出点的坐标; 若不存在,请说明理由.
16.某超市分别以每盏150元,190元的进价购进A,B两种品牌的护眼灯,下表是近两天的销售情况.
销售日期
销售数量(盏)
销售收入(元)
A品牌
B品牌
第一天
2
1
680
第二天
3
4
1670
(1)求A,B两种品牌护眼灯的销售价;
(2)若超市准备用不超过4900元的金额购进这两种品牌的护眼灯共30盏,求B品牌的护眼灯最多采购多少盏?
17.如图1,在平面直角坐标系中,,且满足,过作轴于.
(1)求的面积.
(2)若过作交轴于,且分别平分,如图2,求的度数.
(3)在轴上存在点使得和的面积相等,请直接写出点坐标.
18.如图,在下面直角坐标系中,已知,,三点,其中,,满足关系式.
(1)求,,的值;
(2)如果在第二象限内有一点,请用含的式子表示四边形的面积;
(3)在(2)的条件下,是否存在点,使四边形的面积与三角形的面积相等?若存在,求出点的坐标,若不存在,请说明理由.
19.五一节前,某商店拟购进A、B两种品牌的电风扇进行销售,已知购进3台A种品牌电风扇所需费用与购进2台B种品牌电风扇所需费用相同,购进1台A种品牌电风扇与2台B种品牌电风扇共需费用400元.
(1)求A、B两种品牌电风扇每台的进价分别是多少元?
(2)销售时,该商店将A种品牌电风扇定价为180元/台,B种品牌电风扇定价为250元/台,商店拟用1000元购进这两种风扇(1000元刚好全部用完),为能在销售完这两种电风扇后获得最大的利润,该商店应采用哪种进货方案?
20.李师傅要给-块长9米,宽7米的长方形地面铺瓷砖.如图,现有A和B两种款式的瓷砖,且A款正方形瓷砖的边长与B款长方形瓷砖的长相等, B款瓷砖的长大于宽.已知一块A款瓷砖和-块B款瓷砖的价格和为140元; 3块A款瓷砖价格和4块B款瓷砖价格相等.请回答以下问题:
(1)分别求出每款瓷砖的单价.
(2)若李师傅买两种瓷砖共花了1000 元,且A款瓷砖的数量比B款多,则两种瓷砖各买了多少块?
(3)李师傅打算按如下设计图的规律进行铺瓷砖.若A款瓷砖的用量比B款瓷砖的2倍少14块,且恰好铺满地面,则B款瓷砖的长和宽分别为_ 米(直接写出答案).
21.阅读下列文字,请仔细体会其中的数学思想.
(1)解方程组,我们利用加减消元法,很快可以求得此方程组的解为 ;
(2)如何解方程组呢?我们可以把m+5,n+3看成一个整体,设m+5=x,n+3=y,很快可以求出原方程组的解为 ;
(3)由此请你解决下列问题:
若关于m,n的方程组与有相同的解,求a、b的值.
22.一个四位正整数,若其千位上与百位上的数字之和等于十位上与个位上的数字之和,都等于k,那么称这个四位正整数为“k类诚勤数”,例如:2534,因为,所以2534 是“7类诚勤数”.
(1)请判断7441和5436是否为“诚勤数”并说明理由;
(2)若一个四位正整数A为“5类诚勤数”且能被13整除,请求出的所有可能取值.
23.七年(1)(2)两班各40人参加垃圾分类知识竞赛,规则如图.比赛中,所有同学均按要求一对一连线,无多连、少连.
(1)分数5,10,15,20中,每人得分不可能是________分.
(2)七年(1)班有4人全错,其余成员中,满分人数是未满分人数的2倍;七年(2)班所有人都得分,最低分人数的2倍与其他未满分人数之和等于满分人数.
①问(1)班有多少人得满分?
②若(1)班除0分外,最低得分人数与其他未满分人数相等,问哪个班的总分高?
24.对a,b定义一种新运算T,规定:T(a,b)=(a+2b)(ax+by)(其中x,y均为非零实数).例如:T(1,1)=3x+3y.
(1)已知T(1,﹣1)=0,T(0,2)=8,求x,y的值;
(2)已知关于x,y的方程组,若a≥﹣2,求x+y的取值范围;
(3)在(2)的条件下,已知平面直角坐标系上的点A(x,y)落在坐标轴上,将线段OA沿x轴向右平移2个单位,得线段O′A′,坐标轴上有一点B满足三角形BOA′的面积为9,请直接写出点B的坐标.
25.阅读材料:
如果x是一个有理数,我们把不超过x的最大整数记作[x] .
例如,[3.2]=3,[5]=5,[-2.1]=-3.
那么,x=[x]+a,其中0≤a<1.
例如,3.2=[3.2]+0.2,5=[5]+0,-2.1=[-2.1]+0.9.
请你解决下列问题:
(1)[4.8]= ,[-6.5]= ;
(2)如果[x]=3,那么x的取值范围是 ;
(3)如果[5x-2]=3x+1,那么x的值是 ;
(4)如果x=[x]+a,其中0≤a<1,且4a= [x]+1,求x的值.
26.在平面直角坐标系xOy中,已知点M(a,b).如果存在点N(a′,b′),满足a′=|a+b|,b′=|a﹣b|,则称点N为点M的“控变点”.
(1)点A(﹣1,2)的“控变点”B的坐标为 ;
(2)已知点C(m,﹣1)的“控变点”D的坐标为(4,n),求m,n的值;
(3)长方形EFGH的顶点坐标分别为(1,1),(5,1),(5,4),(1,4).如果点P(x,﹣2x)的“控变点”Q在长方形EFGH的内部,直接写出x的取值范围.
27.对、定义了一种新运算T,规定(其中,均为非零常数),这里等式右边是通常的四则运算,例如:,
已知,.
(1)求,的值;
(2)求.
(3)若关于的不等式组恰好有4个整数解,求的取值范围.
28.在平面直角坐标系中,点,,的坐标分别为,,,且,满足方程为二元一次方程.
(1)求,的坐标.
(2)若点为轴正半轴上的一个动点.
①如图1,当时,与的平分线交于点,求的度数;
②如图2,连接,交轴于点.若成立.设动点的坐标为,求的取值范围.
29.如图①,在平直角坐标系中,△ABO的三个顶点为A(a,b),B(﹣a,3b),O(0,0),且满足|b﹣2|=0,线段AB与y轴交于点C.
(1)求出A,B两点的坐标;
(2)求出△ABO的面积;
(3)如图②,将线段AB平移至B点的对应点落在x轴的正半轴上时,此时A点的对应点为,记△的面积为S,若24<S<32,求点的横坐标的取值范围.
30.如图,在平面直角坐标系中,点O为坐标原点,三角形OAB的边OA、OB分别在x轴正半轴上和y轴正半轴上,A(a,0),a是方程的解,且△OAB的面积为6.
(1)求点A、B的坐标;
(2)将线段OA沿轴向上平移后得到PQ,点O、A的对应点分别为点P和点Q(点P与点B不重合),设点P的纵坐标为t,△BPQ的面积为S,请用含t的式子表示S;
(3)在(2)的条件下,设PQ交线段AB于点K,若PK=,求t的值及△BPQ的面积.
【参考答案】***试卷处理标记,请不要删除
一、解答题
1.(1)(-2,0);(2)①t=2;②当点P在线段BC上时,点P的坐标(-t,2),当点P在线段CD上时,点P的坐标(-3,5-t);③能确定,z=x+y.
【分析】
(1)根据平移的性质即可得到结论;
(2)①由点C的坐标为(-3,2).得到BC=3,CD=2,由于点P的横坐标与纵坐标互为相反数;于是确定点P在线段BC上,有PB=CD,即可得到结果;
②当点P在线段BC上时,点P的坐标(-t,2),当点P在线段CD上时,点P的坐标(-3,5-t);
③如图,过P作PF∥BC交AB于F,则PF∥AD,根据平行线的性质即可得到结论.
【详解】
解:(1)根据题意,可得
三角形OAB沿x轴负方向平移3个单位得到三角形DEC,
∵点A的坐标是(1,0),
∴点E的坐标是(-2,0);
故答案为:(-2,0);
(2)①∵点C的坐标为(-3,2)
∴BC=3,CD=2,
∵点P的横坐标与纵坐标互为相反数;
∴点P在线段BC上,
∴PB=CD,
即t=2;
∴当t=2秒时,点P的横坐标与纵坐标互为相反数;
故答案为:2;
②当点P在线段BC上时,点P的坐标(-t,2),
当点P在线段CD上时,点P的坐标(-3,5-t);
③能确定,
如图,过P作PF∥BC交AB于F,
则PF∥AD,
∠1=∠CBP=x°,∠2=∠DAP=y°,
∴∠BPA=∠1+∠2=x°+y°=z°,
∴z=x+y.
【点睛】
本题考查了坐标与图形的性质,坐标与图形的变化-平移,平行线的性质,正确的作出辅助线是解题的关键.
2.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=.
【分析】
(1)过P作PM∥CD,根据两直线平行,内错角相等可得∠APM=∠DAP,再根据平行公理求出CD∥EF然后根据两直线平行,内错角相等可得∠MPB=∠FBP,最后根据∠APM+∠MPB=∠DAP+∠FBP等量代换即可得证;
(2)结论:∠APB=∠DAP+∠FBP.
(3)①根据(2)的规律和角平分线定义解答; ②根据①的规律可得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,然后根据角平分线的定义和平角等于180°列式整理即可得解.
【详解】
(1)证明:过P作PM∥CD,
∴∠APM=∠DAP.(两直线平行,内错角相等),
∵CD∥EF(已知),
∴PM∥CD(平行于同一条直线的两条直线互相平行),
∴∠MPB=∠FBP.(两直线平行,内错角相等),
∴∠APM+∠MPB=∠DAP+∠FBP.(等式性质) 即∠APB=∠DAP+∠FBP=40°+70°=110°.
(2)结论:∠APB=∠DAP+∠FBP.
理由:见(1)中证明.
(3)①结论:∠P=2∠P1;
理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1,
∵∠DAP=2∠DAP1,∠FBP=2∠FBP1,
∴∠P=2∠P1.
②由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,
∵AP2、BP2分别平分∠CAP、∠EBP,
∴∠CAP2=∠CAP,∠EBP2=∠EBP,
∴∠AP2B=∠CAP+∠EBP,
= (180°-∠DAP)+ (180°-∠FBP),
=180°- (∠DAP+∠FBP),
=180°- ∠APB,
=180°- β.
【点睛】
本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线.
3.(1)20,20,;(2);(3)的值不变,
【分析】
(1)根据,即可计算和的值,再根据内错角相等可证;
(2)先根据内错角相等证,再根据同旁内角互补和等量代换得出;
(3)作的平分线交的延长线于,先根据同位角相等证,得,设,,得出,即可得.
【详解】
解:(1),
,,
,
,,
,
;
故答案为:20、20,;
(2);
理由:由(1)得,
,
,
,
,
,
,
;
(3)的值不变,;
理由:如图3中,作的平分线交的延长线于,
,
,
,,
,
,
,
设,,
则有:,
可得,
,
.
【点睛】
本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键.
4.(1)是;(2)∠B=∠ACB,证明见解析;(3)∠BAC=40°,AC⊥AD.
【分析】
(1)要使AD平分∠EAC,则要求∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则当∠ACB=∠B时,有AD平分∠EAC;
(2)根据角平分线可得∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则有∠ACB=∠B;
(3)由AC⊥BC,有∠ACB=90°,则可求∠BAC=40°,由平行线的性质可得AC⊥AD.
【详解】
解:(1)是,理由如下:
要使AD平分∠EAC,
则要求∠EAD=∠CAD,
由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,
则当∠ACB=∠B时,有AD平分∠EAC;
故答案为:是;
(2)∠B=∠ACB,理由如下:
∵AD平分∠EAC,
∴∠EAD=∠CAD,
∵AD∥BC,
∴∠B=∠EAD,∠ACB=∠CAD,
∴∠B=∠ACB.
(3)∵AC⊥BC,
∴∠ACB=90°,
∵∠EBF=50°,
∴∠BAC=40°,
∵AD∥BC,
∴AD⊥AC.
【点睛】
此题考查了角平分线和平行线的性质,熟练掌握角平分线和平行线的有关性质是解题的关键.
5.(1)见解析;(2)∠PEQ+2∠PFQ=360°;(3)30°
【分析】
(1)首先证明∠1=∠3,易证得AB//CD;
(2)如图2中,∠PEQ+2∠PFQ=360°.作EH//AB.理由平行线的性质即可证明;
(3)如图3中,设∠QPF=y,∠PHQ=x.∠EPQ=z,则∠EQF=∠FQH=5y,想办法构建方程即可解决问题;
【详解】
(1)如图1中,
∵∠2=∠3,∠1=∠2,
∴∠1=∠3,
∴AB//CD.
(2)结论:如图2中,∠PEQ+2∠PFQ=360°.
理由:作EH//AB.
∵AB//CD,EH//AB,
∴EH//CD,
∴∠1=∠2,∠3=∠4,
∴∠2+∠3=∠1+∠4,
∴∠PEQ=∠1+∠4,
同法可证:∠PFQ=∠BPF+∠FQD,
∵∠BPE=2∠BPF,∠EQD=2∠FQD,∠1+∠BPE=180°,∠4+∠EQD=180°,
∴∠1+∠4+∠EQD+∠BPE=2×180°,
即∠PEQ+2(∠FQD+∠BPF)=360°,
∴∠PEQ+2∠PFQ=360°.
(3)如图3中,设∠QPF=y,∠PHQ=x.∠EPQ=z,则∠EQF=∠FQH=5y,
∵EQ//PH,
∴∠EQC=∠PHQ=x,
∴x+10y=180°,
∵AB//CD,
∴∠BPH=∠PHQ=x,
∵PF平分∠BPE,
∴∠EPQ+∠FPQ=∠FPH+∠BPH,
∴∠FPH=y+z﹣x,
∵PQ平分∠EPH,
∴Z=y+y+z﹣x,
∴x=2y,
∴12y=180°,
∴y=15°,
∴x=30°,
∴∠PHQ=30°.
【点睛】
本题考查了平行线的判定与性质,角平分线的定义等知识.(2)中能正确作出辅助线是解题的关键;(3)中能熟练掌握相关性质,找到角度之间的关系是解题的关键.
6.(1)70°;(2),证明见解析;(3)122°
【分析】
(1)过作,根据平行线的性质得到,,即可求得;
(2)过过作,根据平行线的性质得到,,即;
(3)设,则,通过三角形内角和得到,由角平分线定义及得到,求出的值再通过三角形内角和求.
【详解】
解:(1)过作,
,
,
,,
,
故答案为:;
(2).
理由如下:
过作,
,
,
,,
,,
;
(3),
设,则,
,,
又,,
,
平分,
,
,
,
即,解得,
,
.
【点睛】
本题主要考查了平行线的性质和判定,正确做出辅助线是解决问题的关键.
7.(1),;(2)①;②
【分析】
(1)根据规律可得第5个算式;根据规律可得第n个算式;
(2)①根据运算规律可得结果.
②利用非负数的性质求出与的值,代入原式后拆项变形,抵消即可得到结果.
【详解】
(1)根据规律得:第5个等式是,第n个等式是;
(2)①,
,
,
;
②为最小的正整数,,
,,
原式,
,
,
,
.
【点睛】
本题主要考查了数字的变化规律,发现规律,运用规律是解答此题的关键.
8.(1)7;-7;(2)5;(3)13-.
【分析】
(1)估算出的范围,即可得出答案;
(2)分别确定出a、b的值,代入原式计算即可求出值;
(3)根据题意确定出等式左边的整数部分得出y的值,进而求出y的值,即可求出所求.
【详解】
解:(1)∵7﹤﹤8,
∴的整数部分是7,小数部分是-7.
故答案为:7;-7.
(2)∵3﹤﹤4,
∴,
∵2﹤﹤3,
∴b=2
∴|a-b|+
=|-3-2|+
=5-+
=5
(3)∵2﹤﹤3
∴11<9+<12,
∵9+=x+y,其中x是整数,且0﹤y<1,
∴x=11,y=-11+9+=-2,
∴x-y=11-(-2)=13-
【点睛】
本题考查的是无理数的小数部分和整数部分及其运算.估算无理数的整数部分是解题关键.
9.(1)2;3﹣;(2)1、2、3;(3)256,4
【分析】
(1)依照定义进行计算即可;
(2)由题可知,,则可得满足题意的整数的的值为1、2、3;
(3)由,可知,是某个整数的平方,又是符合条件的所有数中最大的数,则,再依次进行计算.
【详解】
解:(1)由定义可得,,,
.
故答案为:2;.
(2),
,即,
整数的值为1、2、3.
故答案为:1、2、3.
(3),即,
可设,且是自然数,
是符合条件的所有数中的最大数,
,
,
,
,
,
即.
故答案为:256,4.
【点睛】
本题属于新定义类问题,主要考查估算无理数大小,无理数的整数部分和小数部分,理解定义内容是解题关键.
10.(1)1011,1101;(2)①12,65,97,见解析,②38
【分析】
(1) 根据“模二数”的定义计算即可;
(2) ①根据“模二数”和模二相加不变”的定义,分别计算和12+23,65+23,97+23的值,即可得出答案
②设两位数的十位数字为a,个位数字为b,根据a、b的奇偶性和“模二数”和模二相加不变”的定义进行讨论,从而得出与“模二相加不变”的两位数的个数
【详解】
解: (1) ,
故答案为:
①,
,
与满足“模二相加不变”.
,,
,
与不满足“模二相加不变”.
,
,
,
与满足“模二相加不变”
②当此两位数小于77时,设两位数的十位数字为a,个位数字为b,;
当a为偶数,b为偶数时,
∴
∴与满足“模二相加不变”有12个(28、48、68不符合)
当a为偶数,b为奇数时,
∴
∴与不满足“模二相加不变”.但27、47、67、29、49、69符合共6个
当a为奇数,b为奇数时,
∴
∴与不满足“模二相加不变”.但17、37、57、19、39、59也不符合
当a为奇数,b为偶数时,
∴
∴与满足“模二相加不变”有16个,(18、38、58不符合)
当此两位数大于等于77时,符合共有4个
综上所述共有12+6+16+4=38
故答案为:38
【点睛】
本题考查新定义,数字的变化类,认真观察、仔细思考,分类讨论的数学思想是解决这类问题的方法.能够理解定义是解题的关键.
11.(1);(2)±3.
【分析】
(1)由于4<7<9,可求的整数部分,进一步得出的小数部分;
(2)先求出的整数部分和小数部分,再代入代数式进行计算即可.
【详解】
解:(1)∵4<7<9,
∴,即,∴,∴的整数部分为2,
∴的小数部分为;
(2)∵是的整数部分,是的小数部分,9<10<16,
∴,即,
∴,
∴的整数部分为3, 的小数部分为,
即有,,
∴
9的平方根为±3.
∴的平方根为±3.
【点睛】
本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.
12.(1)×,√,×,×;(2)3332;1000;(3)(个).
【分析】
(1)根据“本位数”的定义即可判断;
(2)要想保证不进位,千位、百位、十位最大只能是3,个位最大只能是2,故最大的四位“本位数”是3332;千位最小为1,百位、十位、个位最小为0,故最小的“本位数”是1000;
(3)要想构成“本位数”,百位可以为1,2,3,十位可以为0,1,2,3,个位可以为0,1,2,所有的三位数中,“本位数”一共有(个).
【详解】
解:(1)有进位;
没有进位;
有进位;
有进位;
故答案为:×,√,×,×.
(2)要想保证不进位,千位、百位、十位最大只能是3,个位最大只能是2,故最大的四位“本位数”是3332;
千位最小为1,百位、十位、个位最小为0,故最小的“本位数”是1000,
故答案为:3332,1000.
(3)要想构成“本位数”,百位可以为1,2,3,十位可以为0,1,2,3,个位可以为0,1,2,所有的三位数中,“本位数”一共有(个).
【点睛】
本题考查了新定义计算题,准确理解新定义的内涵是解题的关键.
13.(1);(2)①3,②4,③1或5;(3),理由见解析
【分析】
(1)由非负性的性质以及算数平方根的性质可得出的值,可答案可求出;
(2)①1.5秒时,小正方形向右移动1.5厘米,即可计算出重叠部分的面积;
②画出图形,计算所得图形面积即可;
③小正方形的高不变,根据面积即可求出小正方形平移的距离和时间;
(3)过作轴,过作轴,设,则,得出,得出,得出, .
【详解】
解(1),
,
;
(2)①当秒时,小正方形向右移动1.5厘米,
(平方厘米);
②如图1所示,小正方形的一条对角线扫过的面积为红色平行四边形,
面积为:(平方厘米);
③如图2,小正方形平移距离为(厘米),
小正方形平移的距离为1厘米或5厘米,
或,
综上所述,小正方形平移的时间为1或5秒;
(3)如图3,过作轴,过作轴,
平分,
设,
则,
,
,
,
平分,
,
.
【点睛】
本题考查了非负数的性质、坐标与图形的性质、平移的性质、平行线的性质、角平分线的性质、解题的关键是熟练掌握平行线的性质及平移的性质.
14.(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD.
【分析】
(1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,进而可得∠BED=∠ABE+∠CDE;
(2)图2中,根据∠ABE的平分线与∠CDE的平分线相交于点F,结合(1)的结论即可说明:∠BED=2∠BFD;
(3)图3中,根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合(1)的结论即可说明∠BED与∠BFD之间的数量关系.
【详解】
解:(1)如图1中,过点E作EG∥AB,
则∠BEG=∠ABE,
因为AB∥CD,EG∥AB,
所以CD∥EG,
所以∠DEG=∠CDE,
所以∠BEG+∠DEG=∠ABE+∠CDE,
即∠BED=∠ABE+∠CDE;
(2)图2中,因为BF平分∠ABE,
所以∠ABE=2∠ABF,
因为DF平分∠CDE,
所以∠CDE=2∠CDF,
所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),
由(1)得:因为AB∥CD,
所以∠BED=∠ABE+∠CDE,
∠BFD=∠ABF+∠CDF,
所以∠BED=2∠BFD.
(3)∠BED=360°-2∠BFD.
图3中,过点E作EG∥AB,
则∠BEG+∠ABE=180°,
因为AB∥CD,EG∥AB,
所以CD∥EG,
所以∠DEG+∠CDE=180°,
所以∠BEG+∠DEG=360°-(∠ABE+∠CDE),
即∠BED=360°-(∠ABE+∠CDE),
因为BF平分∠ABE,
所以∠ABE=2∠ABF,
因为DF平分∠CDE,
所以∠CDE=2∠CDF,
∠BED=360°-2(∠ABF+∠CDF),
由(1)得:因为AB∥CD,
所以∠BFD=∠ABF+∠CDF,
所以∠BED=360°-2∠BFD.
【点睛】
本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.
15.(1);(2);(3)存在点,其坐标为或.
【分析】
(1)利用平移得性质确定出平移得单位和方向;
(2)根据平移得性质,设出平移单位,根据S△BCD=7(S△BCD建立方程求解,即可);
(3)设出点P的坐标,表示出PC用,建立方程求解即可.
【详解】
(1)∵B(3,0)平移后的对应点,
∴设,
∴
即线段向左平移5个单位,再向上平移4个单位得到线段
∴点平移后的对应点;
(2)∵点C在轴上,点D在第二象限,
∴线段向左平移3个单位,再向上平移个单位,∴
连接,
,∴
∴;
(3)存在
设点,∴
∵,
∴
∴,
∴
∴存在点,其坐标为或.
【点睛】
本题考查了线段平移的性质,解题的关键在利用平移的性质,得到点坐标的关系、图形面积的关系,根据面积的关系,从而求出点的坐标.
16.(1)A品牌为210元/盏,B品牌为260元/盏.(2)10盏.
【分析】
(1)设A品牌护眼灯的销售价为x元/盏,B品牌护眼灯的销售价为y元/盏,根据总价=单价×数量结合两天的销售情况,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设采购m盏B品牌的护眼灯,则采购(30-m)盏A品牌的护眼灯,根据总价=单价×数量结合总费用不超过4900元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.
【详解】
(1)设A品牌护眼灯的销售价为x元/盏,B品牌护眼灯的销售价为y元/盏,
依题意,得:,
解得:.
答:A品牌护眼灯的销售价为210元/盏,B品牌护眼灯的销售价为260元/盏.
(2)设采购m盏B品牌的护眼灯,则采购(30-m)盏A品牌的护眼灯,
依题意,得:150(30-m)+190m≤4900,
解得:m≤10.
答:B品牌的护眼灯最多采购10盏.
【点睛】
本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.
销售日期
销售数量(盏)
销售收入(元)
A品牌
B品牌
第一天
2
1
680
第二天
3
4
1670
17.(1)4;(2);(2)或.
【分析】
(1)根据非负数的性质易得,,然后根据三角形面积公式计算;
(2)过作,根据平行线性质得,且,,所以;然后把 代入计算即可;
(3)分类讨论:设,当在轴正半轴上时,过作轴,轴,轴,利用可得到关于的方程,再解方程求出;
当在轴负半轴上时,运用同样方法可计算出.
【详解】
解:(1),
,,
,,
,,,
的面积;
(2)解:轴,,
,
又∵,
∴,
过作,如图①,
,
,
,
,分
展开阅读全文