资源描述
一、选择题
1.如图,A、B、C、D是数轴上的四个点,其中最适合表示的点是( )
A.点A B.点B C.点C D.点D
答案:D
解析:D
【分析】
根据3<<4即可得到答案.
【详解】
∵9<10<16,
∴3<<4,
∴最适合表示的点是点D,
故选:D.
【点睛】
此题考查利用数轴表示实数,实数的大小比较,正确比较实数是解题的关键.
2.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断移动,每次移动一个单位,依次得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么A2018的坐标为( )
A.(2018,0) B.(1008,1) C.(1009,1) D.(1009,0)
答案:C
解析:C
【分析】
先确定A2、A6、A10、414、…的坐标,然后归纳点的坐标的变化规律“A4n+2(1+2n,1)(n为自然数)”,按此规律解答即可.
【详解】
解:由题意得:A2(1,1),A6(3,1),A10(5,1),A14 (7,1),…
∴A4n+2(1+2n,1)(n为自然数).
∵2018=504×4+2,
∴n=504.
∵1+2×504=1009,
∴A2018(1009,1).
故选C.
【点睛】
本题考查了点坐标的规律,根据点的变化特点、归纳出 “A4n+1(2n,1)(n为自然数)”的规律是解答本题的关键.
3.如图,平面内有五条直线 、、、、,根据所标角度,下列说法正确的是( )
A. B. C. D.
答案:D
解析:D
【分析】
根据平行线的判定定理进行逐个选项进行分析即可得到答案.
【详解】
解:如图所示
∵∠PHD=92°
∴∠GHD=180°-∠PHD=88°
∵∠CDK=88°
∴∠GHD=∠CDK
∴l4∥l5(同位角相等,两直线平行),所以D选项正确
∴∠BCG=∠FGV=93°
∵∠ABF≠∠BCG
∴l1与l2不平行,所以A选项错误;
又∵∠CGH=93°,∠DHP=92°,
∴∠CGH≠∠DHP
∴l2与l3不平行,所以B选项错误;
∵∠IBC+∠BDK=88°+88°≠180°
∴l1与l3不平行,所以C选项错误;
故选D.
【点睛】
本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行,同旁内角互补,两直线平行.
4.如图,在平面直角坐标系上有点A(1.O),点A第一次跳动至点A1(-1,1).第四次向右跳动5个单位至点A4(3,2),…,依此规律跳动下去,点A第100次跳动至点A100的坐标是( )
A.(50,49) B.(51, 49) C.(50, 50) D.(51, 50)
答案:D
解析:D
【解析】
分析:根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可.
详解:观察发现,第2次跳动至点的坐标是(2,1),
第4次跳动至点的坐标是(3,2),
第6次跳动至点的坐标是(4,3),
第8次跳动至点的坐标是(5,4),
…
第2n次跳动至点的坐标是(n+1,n),
∴第100次跳动至点的坐标是(51,50).
故答案选:D.
点睛:坐标与图形性质, 规律型:图形的变化类.
5.如图,将整数按规律排列,若有序数对(a,b)表示第a排从左往右第b个数,则(9,4)表示的数是( )
A.49 B.﹣40 C.﹣32 D.25
答案:B
解析:B
【分析】
根据有序数对(m,n)表示第m行从左到右第n个数,对如图中给出的有序数对和(3,2)表示整数5可得规律,进而可求出(9,4)表示的数.
【详解】
解:根据有序数对(m,n)表示第m行从左到右第n个数,
对如图中给出的有序数对和(3,2)表示整数5可知:
(3,2):;
(3,1):;
(4,4):;
…
由此可以发现,对所有数对(m,n)(n≤m)有,.
表示的数是偶数时结果为负数,奇数时结果为正数,
所以(9,4)表示的数是:.
故选:B.
【点睛】
本题考查了规律型-图形的变化类,解决本题的关键是观察数字的变化寻找规律,总结规律.
6.如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙由点A(2,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是( )
A.(﹣1,﹣1) B.(﹣1,1) C.(﹣2,1) D.(2,0)
答案:A
解析:A
【分析】
根据题意得:矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同,∴物体甲与物体乙的路程比为1:2,可得到物体甲和物体乙第一次相遇点为(-1,1);第二次相遇点为(-1,-1);第三次相遇点为(2,0);由此得出规律,即可求解.
【详解】
根据题意得:矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同,
∴物体甲与物体乙的路程比为1:2,
由题意知:第一次相遇物体甲与物体乙运动的路程和为 ,
物体甲运动的路程为,物体乙运动的路程为 ,
此时在BC边相遇,即第一次相遇点为(-1,1);
第二次相遇物体甲与物体乙运动的路程和为 ,
物体甲运动的路程为,物体乙运动的路程为,
在DE边相遇,即第二次相遇点为(-1,-1);
第三次相遇物体甲与物体乙运动的路程和为,
物体甲运动的路程为,物体乙运动的路程为,
在A点相遇,即第三次相遇点为(2,0);
此时甲乙回到原出发点,则每相遇三次,两点回到出发点,
∵ ,故两个物体运动后的第2021次相遇地点的是:第二次相遇地点,即点(-1,-1).
故选:A.
【点睛】
本题主要考查了点的变化规律,以及行程问题中的相遇问题,通过计算发现规律就可以解决问题,解题的关键是找出规律每相遇三次,甲乙两物体同时回到原点.
7.已知: 表示不超过的最大整数,例: ,令关于的函数 (是正整数),例:=1,则下列结论错误的是( )
A. B.
C. D.或1
答案:C
解析:C
【分析】
根据新定义的运算逐项进行计算即可做出判断.
【详解】
A. ==0-0=0,故A选项正确,不符合题意;
B. ===,=,
所以,故B选项正确,不符合题意;
C. =,= ,
当k=3时,==0,= =1,
此时,故C选项错误,符合题意;
D.设n为正整数,
当k=4n时,==n-n=0,
当k=4n+1时,==n-n=0,
当k=4n+2时,==n-n=0,
当k=4n+3时,==n+1-n=1,
所以或1,故D选项正确,不符合题意,
故选C.
【点睛】
本题考查了新定义运算,明确运算的法则,运用分类讨论思想是解题的关键.
8.设[x]表示最接近x的整数(x≠n+0.5,n为整数),则[]+[]+[]+…+[]=( )
A.132 B.146 C.161 D.666
答案:B
解析:B
【详解】
分析:先计算出1.52,2.52,3.52,4.52,5.52,即可得出[]+[]+[]+…+[]中有2个1,4个2,6个3,8个4,10个5,6个6,从而可得出答案.
详解:1.52=2.25,可得出有2个1;
}2.52=6.25,可得出有4个2;
3.52=12.25,可得出有6个3;
4.52=20.25,可得出有8个4;
5.52=30.25,可得出有10个5;
则剩余6个数全为6.
故[]+[]+[]+…+[]=1×2+2×4+3×6+4×8+5×10+6×6=146.
故选B.
点睛本题考查了估算无理数的大小.
9.对一组数(x,y)的一次操作变换记为P1(x,y),定义其变换法则如下:P1(x,y)=(x+y,x-y),且规定Pn(x,y)=P1(Pn-1(x,y))(n为大于1的整数),如:P1(1,2)=(3,-1),P2(1,2)= P1(P1(1,2))= P1(3,-1)=(2,4),P3(1,2)= P1(P2(1,2))= P1(2,4)=(6,-2),则P2017(1,-1)=( ).
A.(0,21008) B.(0,-21008) C.(0,-21009) D.(0,21009)
答案:D
解析:D
【解析】分析:用定义的规则分别计算出P1,P2,P3,P4,P5,P6,观察所得的结果,总结出规律求解.
详解:因为P1(1,-1)=(0,2);
P2(1,-1)=P1(P1(1,-1))=P1(0,2)=(2,-2);
P3(1,-1)=P1(P2(2,-2))=(0,4);
P4(1,-1)=P1(P3(0,4))=(4,-4);
P5(1,-1)=P1(P4(4,-4))=(0,8);
P6(1,-1)=P1(P5(0,8))=(8,-8);
……
P2n-1(1,-1)=……=(0,2n);
P2n(1,-1)=……=(2n,-2n).
因为2017=2×1009-1,
所以P2017=P2×1009-1=(0,21009).
故选D.
点睛:对于新定义,要理解它所规定的运算规则,再根据这个规则进行相关的计算;探索数字的变化规律通常用列举法,按照一定的顺序列举一定数量的运算过程和结果,从运算过程和结果中归纳出运算结果或运算结果的规律.
10.设记号*表示求、算术平均数的运算,即,则下列等式中对于任意实数,,都成立的是( ).
①;②;
③;④.
A.①②③ B.①②④ C.①③④ D.②④
答案:B
解析:B
【详解】
①中,,所以①成立;
②中,,所以②成立;
③中,所以③不成立;
④中,,所以④成立.
故选B.
11.数轴上表示1,的对应点分別为A,B,点B关于点A的对称点为C,则点C所表示的数是( )
A. B. C. D.
答案:C
解析:C
【分析】
根据数轴上两点之间的距离计算、对称的性质即可解决.
【详解】
根据对称的性质得:AC=AB
设点C表示的数为a,则
解得:
故选:C.
【点睛】
本题考查了数轴上两点之间的距离,图形对称的性质,关键是由对称的性质得到AC=AB.
12.已知,,是数轴上三点,点是线段的中点,点,对应的实数分别为和,则点对应的实数是( )
A. B. C. D.
答案:D
解析:D
【分析】
由为中点,得到,求出的长,即为的长,从而确定出对应的实数即可.
【详解】
解:如图:
根据题意得:,
则点对应的实数是,
故选:D.
【点睛】
此题考查了实数与数轴,弄清数轴上两点间的距离表示方法是解本题的关键.
13.不等式组的解集是,那么m的取值范围( )
A. B. C. D.
答案:A
解析:A
【分析】
先求出不等式的解集,再根据不等式组的解集得出答案即可.
【详解】
解不等式①,得:
∵不等式组 的解集是
∴
故选择:A.
【点睛】
本题考查了解一元一次不等式组,能根据不等式的解集和不等式组的解集得出关于m的不等式是解此题的关键.
14.若,,则所有可能的值为( )
A.8 B.8或2 C.8或 D.或
答案:D
解析:D
【分析】
先求出a、b的值,再计算即可.
【详解】
解:∵,
∴a=±5,
∵,
∴b=±3,
当a=5,b=3时,;
当a=5,b=-3时,;
当a=-5,b=3时,;
当a=-5,b=-3时,;
故选:D.
【点睛】
本题考查了绝对值、平方根和有理数加法运算,解题关键是分类讨论,准确计算.
15.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2017次运动后,动点P的坐标是( )
A.(2017,0) B.(2017,1) C.(2017,2) D.(2018,0)
答案:B
解析:B
【解析】
【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2017除以4,余数是几则与第几次的纵坐标相同,然后求解即可.
【详解】∵第1次运动到点(1,1),第2次运动到点(2,0),第3次接着运动到点(3,2),第4次运动到点(4,0),第5次运动到点(5,1)…,
∴运动后点的横坐标等于运动的次数,
第2017次运动后点P的横坐标为2017,
纵坐标以1、0、2、0每4次为一个循环组循环,
∵2017÷4=504…1,
∴第2017次运动后动点P的纵坐标是1,
∴点P(2017,1),
故选B.
【点睛】本题是对点的坐标的规律的考查,根据图形观察出点的横坐标与纵坐标的变化规律是解题的关键.
16.已知n是正整数,并且n-1<<n,则n的值为( )
A.7 B.8 C.9 D.10
答案:C
解析:C
【分析】
根据实数的大小关系比较,得到5<<6,从而得到3+的范围,就可以求出n的值.
【详解】
解:∵<<,即5<<6,
∴8<3+<9,
∴n=9.
故选:C.
【点睛】
本题考查实数的大小关系,解题的关键是能够确定的范围.
17.对于任意不相等的两个实数a,b,定义运算:a※b=a2﹣b2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为( )
A.﹣40 B.﹣32 C.18 D.10
答案:D
解析:D
【分析】
直接利用题中的新定义给出的运算公式计算得出答案.
【详解】
解:(-5)※4=(﹣5)2﹣42+1=10.
故选:D.
【点睛】
本题主要考查了实数运算,以及定义新运算,正确运用新定义给出的运算公式是解题关键.
18.若的两边与的两边分别平行,且,那么的度数为( )
A. B. C.或 D.或
答案:A
解析:A
【分析】
根据当两角的两边分别平行时,两角的关系可能相等也可能互补,即可得出答案.
【详解】
解:当∠B的两边与∠A的两边如图一所示时,则∠B=∠A,
又∵∠B=∠A+20°,
∴∠A+20°=∠A,
∵此方程无解,
∴此种情况不符合题意,舍去;
当∠B的两边与∠A的两边如图二所示时,则∠A+∠B=180°;
又∵∠B=∠A+20°,
∴∠A+20°+∠A=180°,
解得:∠A=80°;
综上所述,的度数为80°,
故选:A.
【点睛】
本题考查了平行线的性质,本题的解题关键是明确题意,画出相应图形,然后分类讨论角度关系即可得出答案.
19.如图,,P为平行线之间的一点,若,CP平分∠ACD,,则∠BAP的度数为( )
A. B. C. D.
答案:A
解析:A
【分析】
过P点作PMAB交AC于点M,直接利用平行线的性质以及平行公理分别分析即可得出答案.
【详解】
解:如图,过P点作PMAB交AC于点M.
∵CP平分∠ACD,∠ACD=68°,
∴∠4=∠ACD=34°.
∵ABCD,PMAB,
∴PMCD,
∴∠3=∠4=34°,
∵AP⊥CP,
∴∠APC=90°,
∴∠2=∠APC-∠3=56°,
∵PMAB,
∴∠1=∠2=56°,
即:∠BAP的度数为56°,
故选:A.
【点睛】
此题主要考查了平行线的性质以及平行公理等知识,正确利用平行线的性质分析是解题关键.
20.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3( )
A.70° B.180° C.110° D.80°
答案:C
解析:C
【详解】
【分析】作AB∥a,先证AB∥a∥b,由平行线性质得∠2=180°-∠1+∠3,变形可得结果.
【详解】作AB∥a,由直线a平移后得到直线b,
所以,AB∥a∥b
所以,∠2=180°-∠1+∠3,
所以,∠2-∠3=180°-∠1=180°-70°=110°.
故选C
【点睛】本题考核知识点:平行线性质.解题关键点:熟记平行线性质.
21.给出下列说法:
(1)两条直线被第三条直线所截,同位角相等;
(2)不相等的两个角不是同位角;
(3)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;
(4)从直线外一点到这条直线的垂线段,叫做该点到直线的距离;
(5)过一点作已知直线的平行线,有且只有一条.
其中真命题的有( )
A.0个 B.1个 C.2个 D.3个
答案:B
解析:B
【详解】
试题分析:根据两平行线被第三条直线所截,同位角相等,故(1)不正确;
同位角不一定相等,只有在两直线平行时,同位角相等,故(2)不正确;
平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交,故(3)正确;
从直线外一点到这条直线的垂线段的长度,叫做该点到直线的距离,故(4)不正确;
过直线外一点作已知直线的平行线,有且只有一条,故(5)不正确.
故选B.
22.如图,下列各式中正确的是( )
A. B.
C. D.
答案:D
解析:D
【详解】
试题分析:延长TS,
∵OP∥QR∥ST,
∴∠2=∠4,
∵∠3与∠ESR互补,
∴∠ESR=180°﹣∠3,
∵∠4是△FSR的外角,
∴∠ESR+∠1=∠4,即180°﹣∠3+∠1=∠2,
∴∠2+∠3﹣∠1=180°.
故选D.
考点:平行线的性质.
23.如下图,在“”字型图中,、被所截,则与是( )
A.同位角 B.内错角 C.同旁内角 D.邻补角
答案:A
解析:A
【分析】
根据同位角,内错角,同旁内角和邻补角的定义判断即可.
【详解】
解:在“”字型图中,两条直线、被所截形成的角中,∠A与∠4都在直线AB、DE的同侧,并且在第三条直线(截线)AC的同旁,则∠A与∠4是同位角.
故选:A.
【点睛】
本题主要考查了同位角,内错角,同旁内角和邻补角的定义,正确理解定义是解题的关键.
24.如图,△ABC中,∠ACB=90°,AC=3,BC=4,AB=5,P为直线AB上一动点,连接PC,则线段PC的最小值是( )
A.3 B.2.5 C.2.4 D.2
答案:C
解析:C
【分析】
当PC⊥AB时,PC的值最小,利用面积法求解即可.
【详解】
解:在Rt△ABC中,∠ACB=90°,AC=3,BC=4,AB=5,
∵当PC⊥AB时,PC的值最小,
此时:△ABC的面积=•AB•PC=•AC•BC,
∴5PC=3×4,
∴PC=2.4,
故选:C.
【点睛】
本题主要考查了垂线段最短和三角形的面积公式,解题的关键是学会利用面积法求高.
25.如图,从①,②,③三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为( )
A.0 B.1 C.2 D.3
答案:D
解析:D
【分析】
分别任选其中两个条件作为已知,然后结合平行线的判定与性质,证明剩余一个条件是否成立即可.
【详解】
解:如图所示:
(1)当①∠1=∠2,则∠3=∠2,故DB∥EC,则∠D=∠4;
当②∠C=∠D,故∠4=∠C,则DF∥AC,可得:∠A=∠F,
即①②可证得③;
(2)当①∠1=∠2,则∠3=∠2,故DB∥EC,则∠D=∠4,
当③∠A=∠F,故DF∥AC,则∠4=∠C,故可得:∠C=∠D,
即①③可证得②;
(3)当③∠A=∠F,故DF∥AC,则∠4=∠C,
当②∠C=∠D,则∠4=∠D,故DB∥EC,则∠2=∠3,可得:∠1=∠2,
即②③可证得①.
故正确的有3个.
故选:D.
【点睛】
本题主要考查了平行线的判定和性质,正确掌握并熟练运用平行线的判定与性质是解题关键.
26.如果,直线,,则等于( )
A. B. C. D.
答案:B
解析:B
【分析】
先求∠DFE的度数,再利用平角的定义计算求解即可.
【详解】
∵AB∥CD,
∴∠DFE=∠A=65°,
∴∠EFC=180°-∠DFE =115°,
故选B.
【点睛】
本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键.
27.如图,,平分,,点在的延长线上,连接,,下列结论:①;②平分;③;④.其中正确的个数为( )
A.1个 B.2个 C.3个 D.4个
答案:D
解析:D
【分析】
结合平行线性质和平分线判断出①②正确,再结合平行线和平分线根据等量代换判断出③④正确即可.
【详解】
解:∵ABCD,
∴∠1=∠2,
∵AC平分∠BAD,
∴∠2=∠3,
∴∠1=∠3,
∵∠B=∠CDA,
∴∠1=∠4,
∴∠3=∠4,
∴BCAD,
∴①正确;
∴CA平分∠BCD,
∴②正确;
∵∠B=2∠CED,
∴∠CDA=2∠CED,
∵∠CDA=∠DCE+∠CED,
∴∠ECD=∠CED,
∴④正确;
∵BCAD,
∴∠BCE+∠AEC= 180°,
∴∠1+∠4+∠DCE+∠CED= 180°,
∴∠1+∠DCE = 90°,
∴∠ACE= 90°,
∴AC⊥EC,
∴③正确
故其中正确的有①②③④,4个,
故选:D.
【点睛】
此题考查平行线的性质和角平分线的性质,难度一般,利用性质定理判断是关键.
28.下列命题是真命题的有( )个
①两个无理数的和可能是无理数;
②两条直线被第三条直线所截,同位角相等;
③同一平面内,垂直于同一条直线的两条直线互相平行;
④过一点有且只有一条直线与已知直线平行;
⑤无理数都是无限小数.
A.2 B.3 C.4 D.5
答案:B
解析:B
【分析】
分别根据无理数的定义、同位角的定义、平行线的判定逐个判断即可.
【详解】
解:①两个无理数的和可能是无理数,比如:π+π=2π,故①是真命题;
②两条直线被第三条直线所截,同位角不一定相等,故②是假命题;
③同一平面内,垂直于同一条直线的两条直线互相平行,故③是真命题;
④在同一平面内,过一点有且只有一条直线与已知直线平行,故④是假命题;
⑤无理数是无限不循环小数,都是无限小数,故⑤是真命题.
故选:B
【点睛】
本题考查了命题与定理的知识,解题的关键是了解平行线的性质及判定、无理数的定义,难度不大.
29.《九章算术》是中国古代重要的数学著作,其中有这样一道题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗,问醇、行酒各得几何?”译文:今有醇酒(优质酒)1斗,价格50钱;行酒(勾兑酒)1斗,价格10钱.现有30钱,买2斗酒,问能买醇酒、行酒各多少斗?设能买醇酒斗,斗酒斗,可列二元一次方程组为( )
A. B.
C. D.
答案:B
解析:B
【分析】
设能买醇酒斗,行酒斗,利用总价单价数量,结合用30钱共买2斗酒,即可得出关于,的二元一次方程组,此题得解.
【详解】
解:设能买醇酒斗,行酒斗.
买2斗酒,
;
醇酒1斗,价格50钱;行酒1斗,价格10钱,且共花费30钱,
.
联立两方程组成方程组.
故选:B.
【点睛】
本题考查了由实际问题抽象出二元一次方程组,解题的关键是找准等量关系,正确列出二元一次方程组.
30.已知,则下列结论错误的是( )
A. B.
C. D.
答案:C
解析:C
【分析】
先将不等式两边都除以3得a>﹣2b,再两边都加上1知a+1>﹣2b+1,结合﹣2b+1>﹣2b﹣1利用不等式的同向传递性可得答案.
【详解】
解:∵3a>﹣6b,
∴
故A正确;
∵3a>﹣6b,
∴a>﹣2b,
∴a+1>﹣2b+1,
故B正确;
∵3a>﹣6b,
∴a>﹣2b,
得不到
故C不正确;
∵3a>﹣6b,
∴a>﹣2b,
∴
故D正确;
故选:C.
【点睛】
本题主要考查不等式的性质,解题的关键是掌握不等式的变形:①两边都加、减同一个数,具体体现为“移项”,此时不等号方向不变,但移项
31.若关于x,y的二元一次方程组的解为正数,则满足条件的所有整数a的和为( )
A.14 B.15 C.16 D.17
答案:B
解析:B
【分析】
先将二元一次方程组的解用a表示出来,然后再根据题意列出不等式组求出
的取值范围,进而求出所有a的整数值,最后求和即可.
【详解】
解:解关于x,y的二元一次方程组,得,
∵关于x,y的二元一次方程组的解为正数,
∴,
∴3<a<7,
∴满足条件的所有整数a的和为4+5+6=15.
故选:B.
【点睛】
本题考查了二元一次方程组的解法、一元一次不等式组等知识点,根据题意求得a的取值范围是解答本题关键.
32.如果关于的不等式组的整数解仅有,,那么适合这个不等式组的整数,组成的有序数对共有( )
A.个 B.个 C.个 D.个
答案:B
解析:B
【分析】
解不等式组,然后根据不等式组的整数解仅有1,2即可确定,的范围,即可确定,的整数解,即可求解.
【详解】
解:,
解不等式①,得:,
解不等式②,得:,
不等式组的解集为,
不等式组的整数解仅有1、2,
,,
解得:,,
整数有1;2;3,
整数有;,
整数、组成的有序数对有;;;;;,共6个,
故选:B.
【点睛】
此题主要考查了不等式组的整数解,根据不等式组整数解的值确定,的取值范围是解决问题的关键.
33.若关于x的不等式的正整数解是1,2,3,则整数m的最大值是( )
A.10 B.11 C.12 D.13
答案:D
解析:D
【分析】
先解不等式得到x<,再根据正整数解是1,2,3得到3<≤4时,然后从不等式的解集中找出适合条件的最大整数即可.
【详解】
解不等式得x<,
关于x的不等式的正整数解是1,2,3,
3<≤4,解得10 < m≤ 13,
整数m的最大值为13.
故选:D.
【点睛】
本题考查了一元一次不等式的整数解,解决此类问题的关键在于正确解得不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式的最大整数解.
34.若整数使关于的不等式组,有且只有45个整数解,则符合条件的所有整数的和为( )
A.-180 B.-238 C.-119 D.-177
答案:A
解析:A
【分析】
不等式组整理后,根据只有4个整数解,确定出x的取值,进而求出a的范围,进一步求解即可
【详解】
解:
解不等式①得,
解不等式②得,
∴不等式组的解集为
∵不等式组有且只有45个整数解,
∴
∴
∵为整数
∴为-61,-60,-59
∴-61-60-59=-180
故选:A
【点睛】
本题主要考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.
35.若关于x的不等式组恰有3个整数解,则字母a的取值范围是( )
A.a≤﹣1 B.﹣2≤a<﹣1 C.a<﹣1 D.﹣2<a≤﹣1
答案:B
解析:B
【分析】
先确定不等式组的整数解,再求出a的范围即可.
【详解】
解:∵关于x的不等式组恰有3个整数解,
∴a<x<2
∴整数解为1,0,﹣1,
∴﹣2≤a<﹣1,
故选:B.
【点睛】
本题考查了一元一次不等式组的整数解的应用,能根据已知不等式组的解集和整数解确定a的取值范围是解此题的关键.
36.一个物体在天平上两次称重的情况如图所示,则这个物体的质量的取值范围在数轴上表示正确的是( )
A. B.
C. D.
答案:C
解析:C
【分析】
根据已知可看出物体质量的取值范围,再在数轴上表示.
【详解】
有已知可得,设物体的质量为xg,则40<x<50
在数轴表示为
故选C
【点睛】
考核知识点:在数轴表示不等式组的解集.利用数轴表示不等式的解集是关键.
37.甲、乙两地相距360千米,一轮船往返于甲、乙两地之间,顺水行船用18小时,逆水行船用24小时,若设船在静水中的速度为x千米/时,水流速度为y千米/时,则下列方程组中正确的是( )
A. B. C. D.
答案:A
解析:A
【详解】
根据题意可得,顺水速度为:,逆水速度为:,所以根据所走的路程可列方程组为,故选A.
38.在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,其对应的点坐标依次为,,,,,,,…,根据这个规律,第2018个横坐标为( )
A.44 B.45 C.46 D.47
答案:A
解析:A
【分析】
根据图形推导出:当n为奇数时,第n个正方形每条边上有(n+1)个点,连同前边所有正方形共有(n+1)2个点,且终点为(0,n);当n为偶数时,第n个正方形每条边上有(n+1)个点,连同前边所以正方形共有(n+1)2个点,且终点为(n,0),然后根据2018=452-7,可推导出452是第几个正方形共有的点,最后再倒推7个点的横坐标即为所求.
【详解】
解:由图可知:第一个正方形每条边上有2个点,共有4=22个点,且终点为(0,1);
第二个正方形每条边上有3个点,连同第一个正方形共有9=32个点,且终点为(2,0);
第三个正方形每条边上有4个点,连同前两个正方形共有16=42个点,且终点为(0,3);
第四个正方形每条边上有5个点,连同前两个正方形共有25=52个点,且终点为(4,0);
故当n为奇数时,第n个正方形每条边上有(n+1)个点,连同前边所有正方形共有(n+1)2个点,且终点为(0,n);当n为偶数时,第n个正方形每条边上有(n+1)个点,连同前边所以正方形共有(n+1)2个点,且终点为(n,0).
而2018=452-7
n+1=45
解得:n=44
由规律可知,第44个正方形每条边上有45个点,且终点坐标为(44,0),由图可知,再倒着推7个点的横坐标为:44.
故选A.
【点睛】
此题考查的是图形的探索规律题,根据图形探索规律并归纳公式是解决此题的关键.
39.已知关于、的方程组其中,给出下列说法:①当时,方程组的解也是方程的解;②当时,、的值互为相反数;③若,则;④是方程组的解,其中说法正确的是( )
A.①②③④ B.①②③ C.②④ D.②③
答案:D
解析:D
【分析】
①②④将a的值或方程组的解代入方程组,通过求解进行判断,③解方程组,用含a的代数式表示x,y,根据x的取值范围求出a的取值范围,进而可得y的取值范围.
【详解】
①当时,方程组为,
解得,,
∴,故错误;
②当时,方程组为,
解得,,即、的值互为相反数,故正确;
③,
解得,,
∵,
∴,
∵,
∴,
∴,故正确;
④当时,原方程组为,无解,故错误;
综上,②③正确,
故选D.
【点睛】
本题考查解二元一次方程组,解一元一次不等式,方程(组)的解,熟练掌握其运算法则是解题的关键,一般采用直接代入的方法进行求解.
40.在数轴上,点表示1,现将点沿轴做如下移动:第一次点向左移动3个单位长度到达点,第二次将点向右移动6个单位长度到达点,第三次将点向左移动9个单位长度到达点,按照这种移动规律移动下去,第次移动到点,如果点与原点的距离不小于30,那么的最小值是( )
A.19 B.20 C.21 D.22
答案:B
解析:B
【分析】
先根据数轴的定义求出的值,再归纳总结出一般规律,然后根据“点与原点的距离不小于30”求解即可.
【详解】
由题意得:表示的数为
表示的数为
表示的数为
表示的数为
表示的数为
归纳类推得:每移动2次后,点与原点的距离增加3个单位长度
移动20次时,点与原点的距离为30
则n的最小值为20
故选:B.
【点睛】
本题考查了数轴的应用,掌握理解数轴的定义,并归纳类推出规律是解题关键.
41.已知是二元一次方程组的解,则m+3n的值为( )
A.7 B.9 C.14 D.18
答案:B
解析:B
【分析】
将代入方程组,得到方程组,再将此方程组中的两个方程相加即可求解.
【详解】
解:由题意,将代入方程组,
得,
①②得,,
故选:B.
【点睛】
本题考查二元一次方程组的解,理解二元一次方程组的解与二元一次方程组的关系是解题的关键.
42.巴广高速公路在5月10日正式通车,从巴中到广元全长约为126km.一辆小汽车,一辆货车同时从巴中,广元两地相向开出,经过45分钟相遇,相遇时小汽车比货车多行6km,设小汽车和货车的速度分别为xkm/h,ykm/h,则下列方程组正确的是( )
A. B.
C. D.
答案:D
解析:D
【详解】
设小汽车的速度为xkm/h,则45分钟小汽车行进的路程为xkm;设货车的速度为ykm/h,则45分钟货车行进的路程为ykm.由两车起初相距126km,则可得出(x+y)=126;
又由相遇时小汽车比货车多行6km,则可得出(x-y)=6.可得出方程组.
故选:D.
点睛:学生在分析解答此题时需注意弄清题意,明白所要考查的要点.另外,还需注意单位的换算,避免粗心造成失误.
43.从-2,-1,0,1,2,3,5这七个数中,随机抽取一个数记为m,若数m使关于x的不等式组无解,且使关于x的一元一次方程(m-2)x=3有整数解,那么这六个数所有满足条件的m的个数有( )
A.1 B.2 C.3 D.4
答案:D
解析:D
【分析】
不等式组整理后,根据无解确定出的范围,进而得到的值,将的值代入检验,使一元一次方程的解为整数即可.
【详解】
解:解:不等式组整理得:,
由不等式组无解,得到,
解得:,
即,0,1,2,3,5;
当m=-1时,一元一次方程(m-2)x=3解为x=-1,符合题意;
当m=0时,一元一次方程(m-2)x=3解为x=-1.5,不合题意;
当m=1时,一元一次方程(m-2)x=3解为x=-3,符合题意;
当m=2时,一元一次方程(m-2)x=3无解,不合题意;
当m=3时,一元一次方程(m-2)x=3解为x=3,符合题意;
当m=5时,一元一次方程(m-2)x=3解为x=1,符合题意.
故选:D
【点睛】
本题考查根据不等式组的解集确定字母取值及一元一次方程解法,理解好求不等式组的解集的口诀“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题关键.
44.已知关于,的方程组给出下列结论:
①当时,方程组的解也是的解;
②无论取何值,,的值不可能是互为相反数;
③,都为自然数的解有对.
正确的有几个( )
A. B. C. D.
答案:C
解析:C
【分析】
①根据消元法解二元一次方程组,然后将解代入方程x+y=2a+1即可求解;
②根据消元法解二元一次方程组,用含有字母的式子表示x、y,再根据互为相反数的两个数相加为0即可求解;
③根据试值法求二元一次方程x+y=3的自然数解即可得结论.
【详解】
解:①将a=1代入原方程组,得 解得,
将x=3,y=0,a=1代入方程x+y=2a+1的左右两边,
左边x+y=3,右边2a
展开阅读全文