资源描述
初中数学勾股定理知识点总结及解析
一、选择题
1.如图,已知中,的垂直平分线分别交于连接,则的长为( )
A. B. C. D.
2.如图,已知,点在边上,,点是边上一个动点,若周长的最小值是6,则的长是( )
A. B. C. D.1
3.如图,菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长为( )
A.5cm B.10cm C.14cm D.20cm
4.如图,OP=1,过点P作PP1⊥OP,且PP1=1,得OP1=;再过点P1作P1P2⊥OP1且P1P2=1,得OP2=;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2……依此法继续作下去,得OP2018的值为( )
A. B. C. D.
5.如图,△ABC中,AB=10,BC=12,AC=,则△ABC的面积是( ).
A.36 B. C.60 D.
6.A、B、C分别表示三个村庄,米,米,米,某社区拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P的位置应在( )
A.AB的中点 B.BC的中点
C.AC的中点 D.的平分线与AB的交点
7.如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )
A. B. C. D.
8.由下列条件不能判定△ABC为直角三角形的是( )
A.∠A+∠B=∠C B.∠A:∠B:∠C=1:3:2
C.a=2,b=3,c=4 D.(b+c)(b-c)=a²
9.已知三角形的两边分别为3、4,要使该三角形为直角三角形,则第三边的长为( )
A. B. C.5或 D.3或4
10.如图,在△ABC,∠C=90°,AD平分∠BAC交CB于点D,过点D作DE⊥AB,垂足恰好是边AB的中点E,若AD=3cm,则BE的长为( )
A.cm B.4cm C.3cm D.6cm
二、填空题
11.如图所示的网格是正方形网格,则__________°(点,,是网格线交点).
12.如图,现有一长方体的实心木块,有一蚂蚁从处出发沿长方体表面爬行到'处,若长方体的长,宽,高,则蚂蚁爬行的最短路径长是___________.
13.如图,有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆柱的下底面A点有一只蚂蚁,它想吃到上底面上与A点相对的C点处的食物,需要爬行的最短路程是___________________(π的值取3).
14.在△ABC中,AB=15,AC=13,高AD=12,则的周长为_______________.
15.如图,在锐角中,,,的平分线交于点,,分别是和上的动点,则的最小值是______.
16.如图,直线l上有三个正方形a,b,c,若a,c的边长分别为5和12,则b的面积为_________________.
17.已知、、是△ABC三边的长,且满足关系式,则△ABC的形状为___________
18.如图,由两个直角三角形和三个正方形组成的图形,已知 , 其中阴影部分面积是_____________平方单位.
19.在中,,其中一个锐角为,,点在直线上(不与,两点重合),当时,的长为__________.
20.四个全等的直角三角形按图示方式围成正方行ABCD,过各较长直角边的中点作垂线,围成面积为4的小正方形EFGH,已知AM为Rt△ABM的较长直角边,AM=EF,则正方形ABCD的面积为_______.
三、解答题
21.如图,在矩形ABCD中,AB=8,BC=10,E为CD边上一点,将△ADE沿AE折叠,使点D落在BC边上的点F处.
(1)求BF的长;
(2)求CE的长.
22.已知a,b,c满足=|c﹣17|+b2﹣30b+225,
(1)求a,b,c的值;
(2)试问以a,b,c为边能否构成三角形?若能构成三角形,求出三角形的周长和面积;若不能构成三角形,请说明理由.
23.已知中,.
(1)如图1,在中,,连接、,若,求证:
(2)如图2,在中,,连接、,若,于点,,,求的长;
(3)如图3,在中,,连接,若,求的值.
24.如图,在中,,.
(1)如图1,点在边上,,,求的面积.
(2)如图2,点在边上,过点作,,连结交于点,过点作,垂足为,连结.求证:.
25.如图,己知,,,斜边,为垂直平分线,且,连接,.
(1)直接写出__________,__________;
(2)求证:是等边三角形;
(3)如图,连接,作,垂足为点,直接写出的长;
(4)是直线上的一点,且,连接,直接写出的长.
26.如图,在四边形中,,,,点为边上一点,连接,. 与交于点,且∥.
(1)求证:;
(2)若,. 求的长 .
27.如图,在平面直角坐标系中,点是坐标原点,,,均为等边三角形,在轴正半轴上,点,点,点在内部,点在的外部,,,与交于点,连接,,,.
(1)求点的坐标;
(2)判断与的数量关系,并说明理由;
(3)直接写出的周长.
28.如图1,在正方形ABCD中,点E,F分别是AC,BC上的点,且满足DE⊥EF,垂足为点E,连接DF.
(1)求∠EDF= (填度数);
(2)延长DE交AB于点G,连接FG,如图2,猜想AG,GF,FC三者的数量关系,并给出证明;
(3)①若AB=6,G是AB的中点,求△BFG的面积;
②设AG=a,CF=b,△BFG的面积记为S,试确定S与a,b的关系,并说明理由.
29.菱形ABCD中,∠BAD=60°,BD是对角线,点E、F分别是边AB、AD上两个点,且满足AE=DF,连接BF与DE相交于点G.
(1)如图1,求∠BGD的度数;
(2)如图2,作CH⊥BG于H点,求证:2GH=GB+DG;
(3)在满足(2)的条件下,且点H在菱形内部,若GB=6,CH=4,求菱形ABCD的面积.
30.如图,在△ABC中,∠ACB=90°,AC=BC,AB=2,CD是边AB的高线,动点E从点A出发,以每秒1个单位的速度沿射线AC运动;同时,动点F从点C出发,以相同的速度沿射线CB运动.设E的运动时间为t(s)(t>0).
(1)AE= (用含t的代数式表示),∠BCD的大小是 度;
(2)点E在边AC上运动时,求证:△ADE≌△CDF;
(3)点E在边AC上运动时,求∠EDF的度数;
(4)连结BE,当CE=AD时,直接写出t的值和此时BE对应的值.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【分析】
先根据勾股定理的逆定理证明△ABC是直角三角形,根据垂直平分线的性质证得AD=BD,由此根据勾股定理求出CD.
【详解】
∵AB=10,AC=8,BC=6,
∴,
∴△ABC是直角三角形,且∠C=90°,
∵DE垂直平分AB,
∴AD=BD,
在Rt△BCD中, ,
∴,
解得CD=,
故选:C.
【点睛】
此题考查勾股定理及其逆定理,线段垂直平分线的性质,题中证得△ABC是直角三角形,且∠C=90°是解题的关键,再利用勾股定理求解.
2.D
解析:D
【分析】
作点A关于OM的对称点E,AE交OM于点D,连接BE、OE,BE交OM于点C,此时△ABC周长最小,根据题意及作图可得出△OAD是等腰直角三角形,OA=OE=3,,所以∠OAE=∠OEA=45°,从而证明△BOE是直角三角形,然后设AB=x,则OB=3+x,根据周长最小值可表示出BE=6-x,最后在Rt△OBE中,利用勾股定理建立方程求解即可.
【详解】
解:作点A关于OM的对称点E,AE交OM于点D,连接BE、OE,BE交OM于点C,
此时△ABC周长最小,最小值=AB+AC+BC=AB+EC+BC=AB+BE,
∵△ABC周长的最小值是6,
∴AB+BE=6,
∵∠MON=45°,AD⊥OM,
∴△OAD是等腰直角三角形,∠OAD=45°,
由作图可知OM垂直平分AE,
∴OA=OE=3,
∴∠OAE=∠OEA=45°,
∴∠AOE=90°,
∴△BOE是直角三角形,
设AB=x,则OB=3+x,BE=6-x,
在Rt△OBE中,,
解得:x=1,
∴AB=1.
故选D.
【点睛】
本题考查了利用轴对称求最值,等腰直角三角形的判定与性质,勾股定理,熟练掌握作图技巧,正确利用勾股定理建立出方程是解题的关键.
3.D
解析:D
【解析】
【分析】
根据菱形的对角线互相垂直平分可得AC⊥BD,,,再利用勾股定理列式求出AB,然后根据菱形的四条边都相等列式计算即可得解.
【详解】
解:∵四边形ABCD是菱形,
∴AC⊥BD,=3cm,
根据勾股定理得, ,所以,这个菱形的周长=4×5=20cm.
故选:D.
【点睛】
本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,需熟记.
4.D
解析:D
【解析】
【分析】由勾股定理求出各边,再观察结果的规律.
【详解】∵OP=1,OP1=
OP2=,OP3==2,
∴OP4=,
…,
OP2018=.
故选D
【点睛】本题考查了勾股定理,读懂题目信息,理解定理并观察出被开方数比相应的序数大1是解题的关键.
5.A
解析:A
【分析】
作于点D,设,得,,结合题意,经解方程计算得BD,再通过勾股定理计算得AD,即可完成求解.
【详解】
如图,作于点D
设,则
∴,
∴
∵AB=10,AC=
∴
∴
∴
∴△ABC的面积
故选:A.
【点睛】
本题考察了直角三角形、勾股定理、一元一次方程的知识,解题的关键是熟练掌握勾股定理的性质,从而完成求解.
6.A
解析:A
【分析】
先计算AB2=2890000,BC2=640000,AC2=2250000,可得BC2+AC2=AB2,那么△ABC是直角三角形,而直角三角形斜边上的中线等于斜边的一半,从而可确定P点的位置.
【详解】
解:如图
∵AB2=2890000,BC2=640000,AC2=2250000
∴BC2+AC2=AB2,
∴△ABC是直角三角形,
∴活动中心P应在斜边AB的中点.
故选:A.
【点睛】
本题考查了勾股定理的逆定理.解题的关键是证明△ABC是直角三角形.
7.D
解析:D
【分析】
由于BC∥AD,那么有∠DAE=∠ACB,由题意可知∠ABC=∠DEA=90°,BA=ED,利用AAS可证△ABC≌△DEA,于是AE=BC=300,再利用勾股定理可求AC,即可求CE,根据图可知从B到E的走法有两种,分别计算比较即可.
【详解】
解:如图所示,
∵BC∥AD,
∴∠DAE=∠ACB,
又∵BC⊥AB,DE⊥AC,
∴∠ABC=∠DEA=90°,
又∵AB=DE=400m,
∴△ABC≌△DEA,
∴EA=BC=300m,
在Rt△ABC中,AC=
∴CE=AC-AE=200,
从B到E有两种走法:①BA+AE=700m;②BC+CE=500m,
∴最近的路程是500m.
故选D.
【点睛】
本题考查了平行线的性质、全等三角形的判定和性质、勾股定理.解题的关键是证明△ABC≌△DEA,并能比较从B到E有两种走法.
8.C
解析:C
【分析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可.
【详解】
A、∠A+∠B=∠C,可得∠C=90°,是直角三角形,错误;
B、∠A:∠B:∠C=1:3:2,可得∠B=90°,是直角三角形,错误;
C、∵22+32≠42,故不能判定是直角三角形,正确;
D、∵(b+c)(b﹣c)=a2,∴b2﹣c2=a2,即a2+c2=b2,故是直角三角形,错误;
故选C.
【点睛】
本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
9.C
解析:C
【分析】
根据勾股定理和分类讨论的方法可以求得第三边的长,从而可以解答本题.
【详解】
由题意可得,当3和4为两直线边时,第三边为:=5,
当斜边为4时,则第三边为:=,
故选:C
【点睛】
本题考查勾股定理,解答本题的关键是明确题意,利用勾股定理和分类讨论的数学思想解答.
10.A
解析:A
【分析】
先根据角平分线的性质可证CD=DE,从而根据“HL”证明Rt△ACD≌Rt△AED,由DE为AB中线且DE⊥AB,可求AD=BD=3cm ,然后在Rt△BDE中,根据直角三角形的性质即可求出BE的长.
【详解】
∵AD平分∠BAC且∠C=90°,DE⊥AB,
∴CD=DE,
由AD=AD,
所以,Rt△ACD≌Rt△AED,
所以,AC=AE.
∵E为AB中点,∴AC=AE=AB,
所以,∠B=30° .
∵DE为AB中线且DE⊥AB,
∴AD=BD=3cm ,
∴DE=BD=,
∴BE= cm.
故选A.
【点睛】
本题考查了角平分线的性质,线段垂直平分线的性质,全等三角形的判定与性质,含30°角的直角三角形的性质,及勾股定理等知识,熟练掌握全等三角形的判定与性质是解答本题的关键.
二、填空题
11.45
【分析】
如下图,延长BA至网络中的点D处,连接CD. ,只需证△ADC是等腰直角三角形即可
【详解】
如下图,延长BA至网络中的点D处,连接CD
设正方形网络每一小格的长度为1
则根据网络,AB=,AD=,CD=,BC=5,∴BD=2
其中BD、DC、BC边长满足勾股定理逆定理
∴∠CDA=90°
∵AD=DC
∴△ADC是等腰直角三角形
∴∠DAC=45°
故答案为:45°
【点睛】
本题是在网格中考察勾股定理的逆定理,解题关键是延长BA,构造处△ABC的外角∠CAD
12.
【分析】
连接AC',分三种情况进行讨论:画出图形,用勾股定理计算出AC'长,再比较大小即可得出结果.
【详解】
解:如图
展开成平面图,连接AC',分三种情况讨论:
如图1,AB=4,BC'=1+2=3,
∴在Rt△ABC'中,由勾股定理得AC'==5(cm),
如图2,AC=4+2=6,CC'=1
∴在Rt△ACC'中,由勾股定理得AC'==(cm),
如图3,AD =2,DC'=1+4=5,
∴在Rt△ADC'中,由勾股定理得AC'==(cm)
∵5<<,
∴蚂蚁爬行的最短路径长是5cm,
故答案为:5cm.
【点睛】
本题考查平面展开-最短路线问题和勾股定理,本题具有一定的代表性,是一道好题,注意要分类讨论.
13.15厘米
【分析】
要想求得最短路程,首先要画出圆柱的侧面展开图,把和展开到一个平面内.根据两点之间,线段最短,结合勾股定理即可求出蚂蚁爬行的最短路程.
【详解】
解:如图,展开圆柱的半个侧面是矩形,
∴矩形的长是圆柱的底面周长的一半,即AB=厘米,矩形的宽BC=12厘米.
∴蚂蚁需要爬行最短路程厘米.
故答案为:15厘米
【点睛】
求两个不在同一平面内的两点之间的最短距离时,一定要展开到一个平面内,根据两点之间,线段最短.
14.32或42
【分析】
根据题意画出图形,分两种情况:△ABC是钝角三角形或锐角三角形,分别求出边BC,即可得到答案
【详解】
当△ABC是钝角三角形时,
∵∠D=90°,AC=13,AD=12,
∴,
∵∠D=90°,AB=15,AD=12,
∴,
∴BC=BD-CD=9-5=4,
∴△ABC的周长=4+15+13=32;
当△ABC是锐角三角形时,
∵∠ADC=90°,AC=13,AD=12,
∴,
∵∠ADB=90°,AB=15,AD=12,
∴,
∴BC=BD-CD=9+5=14,
∴△ABC的周长=14+15+13=42;
综上,△ABC的周长是32或42,
故答案为:32或42.
【点睛】
此题考查勾股定理的实际应用,能依据题意正确画出图形分类讨论是解题的关键.
15..
【分析】
作点B关于AD的对称点B′,过点B′作B′N⊥AB于N交AD于M,根据轴对称确定最短路线问题,B′N的长度即为BM+MN的最小值,根据∠BAC=60°判断出△ABB′是等边三角形,再根据等边三角形的性质求解即可.
【详解】
如图,作点B关于AD的对称点B′,
由垂线段最短,过点B′作B′N⊥AB于N交AD于M,B′N最短,
由轴对称性质,BM=B′M,
∴BM+MN=B′M+MN=B′N,
由轴对称的性质,AD垂直平分BB′,
∴AB=AB′,
∵∠BAC=60°,
∴△ABB′是等边三角形,
∵AB=2,
∴B′N=2×=,
即BM+MN的最小值是.
故答案为.
【点睛】
本题考查了轴对称确定最短路线问题,等边三角形的判定与性质,确定出点M、N的位置是解题的关键,作出图形更形象直观.
16.169
【解析】
解:由于a、b、c都是正方形,所以AC=CD,∠ACD=90°;
∵∠ACB+∠DCE=∠ACB+∠BAC=90°,即∠BAC=∠DCE,∠ABC=∠CED=90°,AC=CD,∴△ACB≌△DCE,∴AB=CE,BC=DE;
在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,即Sb=Sa+Sc==169.
故答案为:169.
点睛:此题主要考查对全等三角形和勾股定理的综合运用,结合图形求解,对图形的理解能力要比较强.
17.等腰直角三角形
【解析】
根据非负数的意义,由,可知,a=b,可知此三角形是等腰直角三角形.
故答案为:等腰直角三角形.
点睛:此题主要考查了三角形形状的确定,根据非负数的性质,可分别得到关系式,然后结合勾股定理的逆定理知是直角三角形,然后由a-b=0得到等腰直角三角形,比较容易,关键是利用非负数的性质得到关系式.
18.49
【分析】
先计算出BC的长,再由勾股定理求出阴影部分的面积即可.
【详解】
∵∠ACB=90 ,,
∴,
∴阴影部分的面积=,
故答案为:49.
【点睛】
此题考查勾股定理,能利用根据直角三角形计算得到所需的边长,题中根据勾股定理的图形得到阴影部分面积等于BC的平方是解题的关键.
19.或或4
【分析】
根据题意画出图形,分4种情况进行讨论,利用含30°角直角三角形与勾股定理解答.
【详解】
解:如图1:
当∠C=60°时,∠ABC=30°,与∠ABP=30°矛盾;
如图2:
当∠C=60°时,∠ABC=30°,
∵∠ABP=30°,
∴∠CBP=60°,
∴△PBC是等边三角形,
∴;
如图3:
当∠ABC=60°时,∠C=30°,
∵∠ABP=30°,
∴∠PBC=60°-30°=30°,
∴PC=PB,
∵,
∴,
在Rt△APB中,根据勾股定理,
即,
即,解得,
如图4:
当∠ABC=60°时,∠C=30°,
∵∠ABP=30°,
∴∠PBC=60°+30°=90°,
∴
在Rt△BCP中,根据勾股定理,
即,解得PC=4(已舍去负值).
综上所述,的长为或或4.
故答案为:或或4.
【点睛】
本题考查含30°角直角三角形,等边三角形的性质和判定,勾股定理.理解直角三角形30°角所对边是斜边的一半,并能通过勾股定理去求另外一个直角边是解决此题的关键.
20.32
【分析】
由题意设AM=2a,BM=b,则正方形ABCD的面积=,由题意可知EF=(2a-b)-2(a-b)=2a-b-2a+2b=b,由此分析即可.
【详解】
解:设AM=2a.BM=b.则正方形ABCD的面积=
由题意可知EF=(2a-b)-2(a-b)=2a-b-2a+2b=b,
∵AM=EF,
∵正方形EFGH的面积为4,
∴,
∴正方形ABCD的面积=
故答案为32.
【点睛】
本题考查正方形的性质、勾股定理以及线段的垂直平分线的定义等知识,解题的关键是灵活运用所学知识解决问题.
三、解答题
21.(1)BF长为6;(2)CE长为3,详细过程见解析.
【分析】
(1)由矩形的性质及翻折可知,∠B=90°,AF=AD=10,且AB=8,在ABF中,可由勾股定理求出BF的长;
(2)设CE=x,根据翻折可知,EF=DE=8-x,由(1)可知BF=6,则CF=4,在CEF中,可由勾股定理求出CE的长.
【详解】
解:(1)∵四边形ABCD为矩形,
∴∠B=90°,且AD=BC=10,
又∵AFE是由ADE沿AE翻折得到的,
∴AF=AD=10,
又∵AB=8,
在ABF中,由勾股定理得:,
故BF的长为6.
(2)设CE=x ,
∵四边形ABCD为矩形,
∴CD=AB=8,∠C=90°,DE=CD-CE=8-x,
又∵△AFE是由△ADE沿AE翻折得到的,
∴FE=DE=8-x,
由(1)知:BF=6,故CF=BC-BF=10-6=4,
在CEF中,由勾股定理得:,
∴,解得:x=3,
故CE的长为3.
【点睛】
本题考查了折叠的性质:折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,利用勾股定理求解是本题的关键.
22.(1)a=8,b=15,c=17;(2)能,60
【分析】
(1)根据算术平方根,绝对值,平方的非负性即可求出a、b、c的值;
(2)根据勾股定理的逆定理即可求出此三角形是直角三角形,由此得到面积和周长
【详解】
解:(1)∵a,b,c满足=|c﹣17|+b2﹣30b+225,
∴,
∴a﹣8=0,b﹣15=0,c﹣17=0,
∴a=8,b=15,c=17;
(2)能.
∵由(1)知a=8,b=15,c=17,
∴82+152=172.
∴a2+c2=b2,
∴此三角形是直角三角形,
∴三角形的周长=8+15+17=40;
三角形的面积=×8×15=60.
【点睛】
此题考查算术平方根,绝对值,平方的非负性,勾股定理的逆定理判断三角形的形状.
23.(1)详见解析;(2);(3).
【分析】
(1)证∠EAC=∠DAB.利用SAS证△ACE≌△ABD可得;(2)连接BD,证,证△ACE≌△ABD可得,CE=BD=5,利用勾股定理求解;(3)作CE垂直于AC,且CE=AC,连接AE,则,利用勾股定理得AE,BE=,根据(1)思路得AD=BE=.
【详解】
(1) 证明:∵∠DAE=∠BAC,
∴∠DAE+∠CAD=∠BAC+∠CAD,
即∠EAC=∠DAB.
在△ACE与△ABD中,
,
∴△ACE≌△ABD(SAS),
∴;
(2)连接BD
因为, ,
所以是等边三角形
因为,ED=AD=AE=4
因为
所以
同(1)可知△ACE≌△ABD(SAS),
所以,CE=BD=5
所以
所以BE=
(3)作CE垂直于AC,且CE=AC,连接AE,则
所以AE=
因为
所以AE
又因为
所以
所以
因为
所以BC=CD,
因为同(1)可得△ACD≌△ECB(SAS)
所以AD=BE=
所以
【点睛】
考核知识点:等边三角形;勾股定理.构造全等三角形和直角三角形是关键.
24.(1)3;(2)见解析.
【分析】
(1)根据勾股定理可得AC,进而可得BC与BD,然后根据三角形的面积公式计算即可;
(2)过点B作BH⊥BG交EF于点H,如图3,则根据余角的性质可得∠CBG=∠EBH,由已知易得BE∥AC,于是∠E=∠EFC,由于,,则根据余角的性质得∠EFC=∠BCG,于是可得∠E=∠BCG,然后根据ASA可证△BCG≌△BEH,可得BG=BH,CG=EH,从而△BGH是等腰直角三角形,进一步即可证得结论.
【详解】
解:(1)在△ACD中,∵,,,∴,
∵,∴BC=4,BD=3,∴;
(2)过点B作BH⊥BG交EF于点H,如图3,则∠CBG+∠CBH=90°,
∵,∴∠EBH+∠CBH=90°,∴∠CBG=∠EBH,
∵,,∴BE∥AC,∴∠E=∠EFC,
∵,,∴∠EFC+∠FCG=90°,∠BCG+∠FCG=90°,
∴∠EFC=∠BCG,∴∠E=∠BCG,
在△BCG和△BEH中,∵∠CBG=∠EBH,BC=BE,∠BCG=∠E,∴△BCG≌△BEH(ASA),
∴BG=BH,CG=EH,
∴,
∴.
【点睛】
本题考查了直角三角形的性质、全等三角形的判定和性质、等腰直角三角形的判定和性质、余角的性质和勾股定理等知识,属于常考题型,正确作出辅助线构造全等三角形是解题的关键.
25.(1),(2)证明见解析(3)(4)或
【分析】
(1)根据含有30°角的直角三角形的性质可得BC=2,再由勾股定理即可求出AC的长;
(2)由为垂直平分线可得DB=DA,在Rt△BDE中,由勾股定理可得BD=4,可得BD=2BE,故∠BDE为60°,即可证明是等边三角形;
(3)由(1)(2)可知,,AD=4,进而可求得CD的长,再由等积法可得,代入求解即可;
(4)分点P在线段AC上和AC的延长线上两种情况,过点E作AC的垂线交AC于点Q,构造Rt△PQE,再根据勾股定理即可求解.
【详解】
(1)∵,,,斜边,
∴,∴;
(2)∵为垂直平分线,∴ADB=DA,
在Rt△BDE中,
∵,,
∴,
∴BD=2BE,∴∠BDE为60°,
∴为等边三角形;
(3))由(1)(2)可知,,AD=4,
∴,
∵,
∴,
∴;
(4)分点P在线段AC上和AC的延长线上两种情况,
如图,过点E作AC的垂线交AC于点Q,
∵AE=2,∠BAC=30°,∴EQ=1,
∵,∴,
①若点P在线段AC上,
则,
∴;
②若点P在线段AC的延长线上,
则,
∴;
综上,PE的长为或.
【点睛】
本题考查勾股定理及其应用、含30°的直角三角形的性质等,解题的关键一是能用等积法表示并求出BF的长,二是对点P的位置要分情况进行讨论.
26.(1)见解析;(2).
【分析】
(1)由等边三角形的判定定理可得△ABD为等边三角形,又由平行进行角度间的转化可得出结论.
(2)连接AC交BD于点O,由题意可证AC垂直平分BD,△ABD是等边三角形,可得∠BAO=∠DAO=30°,AB=AD=BD=8,BO=OD=4,通过证明△EDF是等边三角形,可得DE=EF=DF=2,由勾股定理可求OC,BC的长.
【详解】
(1)证明:∵,,
∴△是等边三角形.
∴.
∵∥,
∴.
∴.
(2)解:连接交于点,
∵,,
∴垂直平分.
∴.
∵△是等边三角形,
∴,
∴.
∵∥,
∴.
∴, .
∵.
∴.
∴△是等边三角形.
∴,
∴,.
在Rt△中,
∴.
在Rt△中,
∴.
【点睛】
本题考查了等边三角形的性质和判定,勾股定理,熟练运用等边三角形的判定是本题的关键.
27.(1),;(2);(3).
【分析】
(1)由等边三角形的性质得出,,由勾股定理得出,即可得出点的坐标;
(2)由等边三角形的性质得出,,,证出,由证明,即可得出;
(3)证出,求出,由全等三角形的性质得出,证出,由等边三角形的性质得,即可得出答案.
【详解】
解:(1)是等边三角形,点,点,
,,,
点的坐标为,;
(2);理由如下:
,均为等边三角形,
,,,
,
在和中,,
,
;
(3),
,
,
,
是等边三角形,,
,
,
,
,
,
,
,
,为等边三角形,
为斜边的中点,
,
的周长.
【点睛】
本题是三角形综合题目,考查了等边三角形的性质、勾股定理、坐标与图形性质、全等三角形的判定与性质、三角函数等知识;本题综合性强,有一定难度,熟练掌握等边三角形的性质,证明三角形全等是解题的关键.
28.(1)45°;(2)GF=AG+CF,证明见解析;(3)①6; ②,理由见解析.
【解析】
【分析】
(1)如图1中,连接BE.利用全等三角形的性质证明EB=ED,再利用等角对等边证明EB=EF即可解决问题.
(2)猜想:GF=AG+CF.如图2中,将△CDF绕点D旋转90°,得△ADH,证明△GDH≌△GDF(SAS)即可解决问题.
(3)①设CF=x,则AH=x,BF=6-x,GF=3+x,利用勾股定理构建方程求出x即可.
②设正方形边长为x,利用勾股定理构建关系式,利用整体代入的思想解决问题即可.
【详解】
解:(1)如图1中,连接BE.
∵四边形ABCD是正方形,
∴CD=CB,∠ECD=∠ECB=45°,
∵EC=EC,
∴△ECB≌△ECD(SAS),
∴EB=ED,∠EBC=∠EDC,
∵∠DEF=∠DCF=90°,
∴∠EFC+∠EDC=180°,
∵∠EFB+∠EFC=180°,
∴∠EFB=∠EDC,
∴∠EBF=∠EFB,
∴EB=EF,
∴DE=EF,
∵∠DEF=90°,
∴∠EDF=45°
故答案为45°.
(2)猜想:GF=AG+CF.
如图2中,将△CDF绕点D旋转90°,得△ADH,
∴∠CDF=∠ADH,DF=DH,CF=AH,∠DAH=∠DCF=90°,
∵∠DAC=90°,
∴∠DAC+∠DAH=180°,
∴H、A、G三点共线,
∴GH=AG+AH=AG+CF,
∵∠EDF=45°,
∴∠CDF+∠ADG=45°,
∴∠ADH+∠ADG=45°
∴∠GDH=∠EDF=45°
又∵DG=DG
∴△GDH≌△GDF(SAS)
∴GH=GF,
∴GF=AG+CF.
(3)①设CF=x,则AH=x,BF=6-x,GF=3+x,
则有(3+x)2=(6-x)2+32,
解得x=2
∴S△BFG=•BF•BG=6.
②设正方形边长为x,
∵AG=a,CF=b,
∴BF=x-b,BG=x-a,GF=a+b,
则有(x-a)2+(x-b)2=(a+b)2,
化简得到:x2-ax-bx=ab,
∴S=(x-a)(x-b)=(x2-ax-bx+ab)=×2ab=ab.
【点睛】
本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考常考题型.
29.(1)∠BGD=120°;(2)见解析;(3)S四边形ABCD=26.
【解析】
【分析】
(1)只要证明△DAE≌△BDF,推出∠ADE=∠DBF,由∠EGB=∠GDB+∠GBD=∠GDB+∠ADE=60°,推出∠BGD=180°-∠BGE=120°;
(2)如图3中,延长GE到M,使得GM=GB,连接BD、CG.由△MBD≌△GBC,推出DM=GC,∠M=∠CGB=60°,由CH⊥BG,推出∠GCH=30°,推出CG=2GH,由CG=DM=DG+GM=DG+GB,即可证明2GH=DG+GB;
(3)解直角三角形求出BC即可解决问题;
【详解】
(1)解:如图1﹣1中,
∵四边形ABCD是菱形,
∴AD=AB,
∵∠A=60°,
∴△ABD是等边三角形,
∴AB=DB,∠A=∠FDB=60°,
在△DAE和△BDF中,
,
∴△DAE≌△BDF,
∴∠ADE=∠DBF,
∵∠EGB=∠GDB+∠GBD=∠GDB+∠ADE=60°,
∴∠BGD=180°﹣∠BGE=120°.
(2)证明:如图1﹣2中,延长GE到M,使得GM=GB,连接CG.
∵∠MGB=60°,GM=GB,
∴△GMB是等边三角形,
∴∠MBG=∠DBC=60°,
∴∠MBD=∠GBC,
在△MBD和△GBC中,
,
∴△MBD≌△GBC,
∴DM=GC,∠M=∠CGB=60°,
∵CH⊥BG,
∴∠GCH=30°,
∴CG=2GH,
∵CG=DM=DG+GM=DG+GB,
∴2GH=DG+GB.
(3)如图1﹣2中,由(2)可知,在Rt△CGH中,CH=4,∠GCH=30°,
∴tan30°=,
∴GH=4,
∵BG=6,
∴BH=2,
在Rt△BCH中,BC=,
∵△ABD,△BDC都是等边三角形,
∴S四边形ABCD=2•S△BCD=2××()2=26.
【点睛】
本题考查菱形的性质、等边三角形的判定和性质、全等三角形的判定和性质,直角三角形30度角性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
30.(1)t,45;(2)详见解析;(3)90°;(4)t的值为﹣1或+1,BE=.
【解析】
【分析】
(1)根据等腰直角三角形的性质即可解决问题;
(2)根据SAS即可证明△ADE≌△CDF;
(3)由△ADE≌△CDF,即可推出∠ADE=∠CDF,推出∠EDF=∠ADC=90°;
(4)分两种情形分别求解即可解决问题.
【详解】
(1)由题意:AE=t.
∵CA=CB,∠ACB=90°,CD⊥AB,∴∠BCD=∠ACD=45°.
故答案为t,45.
(2)∵∠ACB=90°,CA=CB,CD⊥AB,∴CD=AD=BD,∴∠A=∠DCB=45°.
∵AE=CF,∴△ADE≌△CDF(SAS).
(3)∵点E在边AC上运动时,△ADE≌△CDF,∴∠ADE=∠CDF,∴∠EDF=∠ADC=90°.
(4)①当点E在AC边上时,如图1.在Rt△ACB中,∵∠ACB=90°,AC=CB,AB=2,CD⊥AB,∴CD=AD=DB=1,AC=BC.
∵CE=CD=1,∴AE=AC﹣CE1,∴t1.
∵BC=,∴BE===;
②当点E在AC的延长线上时,如图2,AE=AC+EC1,∴t1.
∵BC=,∴BE===;
综上所述:满足条件的t的值为1或1,BE=.
【点睛】
本题考查了等腰直角三角形的性质,全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
展开阅读全文